Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-24T23:41:20.415Z Has data issue: false hasContentIssue false

Photoelectric-Yield Studies of c-Si/a-Si:H Interfaces

Published online by Cambridge University Press:  15 February 2011

M. Sebastiani
Affiliation:
Dipartimento di Fisica, Università “La Sapienza”, P.le Aldo Moro 2, 00185 Rome, Italy and Dipartimento di Fisica “E. Amaldi”, III Università di Roma, V. Segre 2, 00146 Rome, Italy
L. Di Gaspare
Affiliation:
Dipartimento di Fisica, Università “La Sapienza”, P.le Aldo Moro 2, 00185 Rome, Italy and Dipartimento di Fisica “E. Amaldi”, III Università di Roma, V. Segre 2, 00146 Rome, Italy
C. Bittencourt
Affiliation:
Dipartimento di Fisica, Università “La Sapienza”, P.le Aldo Moro 2, 00185 Rome, Italy and Dipartimento di Fisica “E. Amaldi”, III Università di Roma, V. Segre 2, 00146 Rome, Italy
F. Evangelisti
Affiliation:
Dipartimento di Fisica, Università “La Sapienza”, P.le Aldo Moro 2, 00185 Rome, Italy and Dipartimento di Fisica “E. Amaldi”, III Università di Roma, V. Segre 2, 00146 Rome, Italy
Get access

Abstract

We report the first yield spectroscopy study on well characterized c-Si/a-Si:H heterojunctions grown in situ under UHV conditions. We find that this spectroscopy, when operated in the constant final state mode, allows a direct and precise determination of the valence-band discontinuity at the interface. A value of δEv = 0.44 ± 0.02 eV was found for the discontinuity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsuura, H., Okuno, T., Okushi, H., and Tanaka, K., J. Appl. Phys. 55, 1012 (1984).Google Scholar
2. Essick, J. M. and Cohen, J. D., in “Amorphous Silicon Technology”, MRS Symposium Proceedings, Reno (Nevada, U.S.A.) 118, 549 (1988); “Amorphous Silicon Technology”, MRS Symposium Proceedings, San Francisco (U.S.A.) 149, 699 (1989).Google Scholar
3. Cuniot, M. and Marfaing, Y., Phil. Mag. B 57, 291 (1988).Google Scholar
4. Mimura, H. and Hatanaka, Y., Appl. Phys. Lett. 50, 326 (1987).Google Scholar
5. Eschrich, H., Bruns, J., Elstner, L., and Swiatkowski, C., J. Non-Cryst. Solids 164–166, 717 (1993).Google Scholar
6. Sebastiani, M., Bittencourt, C., Di Gaspare, L., and Evangelisti, F., to be published.Google Scholar
7. Eaglesham, D. J., Gossmann, H. J., and Cernilo, M., Phys. Rev. Letters 65, 1227 (1990).Google Scholar
8. Wang, S. L., Patriarca, F., and Evangelisti, F., in “Amorphous Silicon Technology”, MRS Symposium Proceedings, San Francisco (U.S.A) 258, 241 (1992)Google Scholar
9. Gobeli, G. W. and Allen, F. G., Phys. Rev. 127, 141 (1962).Google Scholar
10. C Sebenne, A., Il Nuovo Cimento 39 B, 768 (1977).Google Scholar
11. Griep, S. and Ley, L., J. Non-Cryst. Solids 59–60, 253 (1983);Google Scholar
Winer, K., and Ley, L., Phys. Rev. B 36, 6072 (1987).Google Scholar
12. Kane, E. O., Phys. Rev. 127, 131 (1962).Google Scholar
13. Hamers, R. J. and Kohler, U. K., J. Vac. Sci. Technol. A 7, 2854 (1989).Google Scholar