Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T12:17:25.268Z Has data issue: false hasContentIssue false

Photoluminescence due to Group IV impurities in ZnO

Published online by Cambridge University Press:  08 February 2012

J. Cullen
Affiliation:
School of Physical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland
K. Johnston
Affiliation:
ISOLDE Collaboration, CERN, CH-1211 Geneva 23, Switzerland Technische Physik, Universitat des Saarlandes, D66041 Saarbrucken, Germany
M. O. Henry
Affiliation:
School of Physical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland ISOLDE Collaboration, CERN, CH-1211 Geneva 23, Switzerland
E. McGlynn
Affiliation:
School of Physical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland
Get access

Abstract

We report the results of photoluminescence measurements on ZnO bulk crystals implanted with both stable and radioactive species involving the group IV impurities Ge, Si and Sn. We previously confirmed the identity of a line emerging at 3.3225 eV as being related to Ge and present here uniaxial stress data which show that the defect responsible has trigonal symmetry. Experiments with Si provide circumstantial evidence of a connection with the well-known line at 3.333 eV. Our measurements indicate that for the case of Sn on the Zn site luminescence is not observed. We also confirm that the I9 and I2 lines are due to substitutional In impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, M. R., Callsen, G., Reparaz, J. S., Schulze, J.-H., Kirste, R., Cobet, M., Ostapenko, I. A., Rodt, S., Nenstiel, C., Kaiser, M., Hoffmann, A., Rodina, A. V., Phillips, M. R., Lautenschlager, S., S. Eisermann, and Meyer, B. K., Phys. Rev. B 84, 035313 (2011).Google Scholar
2. Johnston, K., Cullen, J., Henry, M. O., McGlynn, E. and Stachura, M., Phys. Rev. B 83, 125205 (2011).Google Scholar
3. Deicher, M. and the ISOLDE Collaboration, Physica B 389, 5157 (2007).Google Scholar
4. Henry, M. O., Deicher, M., Magerle, R., McGlynn, E. and Stotzler, A., Hyperfine Interactions 129, 443 (2000).Google Scholar
5. Mendelsberg, R. J., Kennedy, J. V., Durbin, S. M. and Reeves, R. J., J. Vac. Sci. Technol. B 27, 3 (2009).Google Scholar
7. O’Morain, C., McGuigan, K. G., Henry, M. O. and Campion, J. D., Meas. Sci. Tech. 3, 337 (1992).Google Scholar
8. Schildknecht, A., Sauer, R. and Thonke, K., Physica B 205, 340 (2003).Google Scholar
9. McGlynn, E. and Henry, M. O., Phys. Rev. B 76, 184109 (2007).Google Scholar
10. Muller, S., Stichtenoth, D., Uhrmacher, M., Hofsass, H., Ronning, C. and Roder, J., Appl. Phys. Lett. 90, 012107 (2007).Google Scholar
11. Lyons, J. L., Janotti, A. and Van de Walle, C. G., Phys. Rev. B 80, 205113 (2009).Google Scholar
12. Mendelsberg, R. J., Allen, M. W., Durbin, S. M. and Reeves, R. J., Phys. Rev. B 83, 205202 (2011).Google Scholar