Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-18T19:25:11.844Z Has data issue: false hasContentIssue false

Photoluminescence from freestanding GaN with (1010) orientation

Published online by Cambridge University Press:  01 February 2011

M. A. Reshchikov
Affiliation:
Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Richmond, VA 23284
A. Teke
Affiliation:
Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Richmond, VA 23284 Department of Physics, Balikesir University, 10100 Balikesir, Turkey
H. P. Maruska
Affiliation:
Crystal Photonics Inc., Sanford, FL 32773
D. W. Hill
Affiliation:
Crystal Photonics Inc., Sanford, FL 32773
H. Morkoç
Affiliation:
Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Richmond, VA 23284
Get access

Abstract

Freestanding GaN templates with (1010) orientation (M-plane) were obtained by halide vapor phase epitaxy (HVPE) on nearly lattice-matched LiAlO2 and subsequent removal of the substrate by wet chemical etching. Photoluminescence (PL) spectrum from both sides of the GaN template investigated is dominated by peaks at 3.47, 3.42 and 3.36 eV, tentatively attributed to an exciton bound to the neutral shallow donor and two unidentified structural defects, respectively. The quantum efficiency of the exciton-related emission exceeds 10%, whereas that of the combined emission from the defect-related bands (red, yellow and blue) is below 0.1%. The evolution of the PL spectrum with temperature and excitation intensity is analyzed in detail. Effects of polishing and etching on the PL properties are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hellman, E. S., Liliental-Weber, Z., and Buchanan, D. N. F., MRS Internet J. Nitride Res. 2, 30 (1997).Google Scholar
2. Kuokstis, E., Chen, C. Q., Gaevski, M. E., Sun, W. H., Yang, J. W., Simin, G., Maruska, H. P., Hill, D. W., Chou, M. C., Gallagher, J. J., and Chai, B., Appl. Phys. Lett. 81, 4130 (2002).Google Scholar
3. Sun, Y. J., Brandt, O., Jahn, U., Liu, T. Y., Trampert, A., Cronenberg, S., Dhar, S., and Ploog, K. H., J. Appl. Phys. 92, 5714 (2002).Google Scholar
4. Jasinski, J., Liliental-Weber, Z., Maruska, H. P., Chai, B. H., Hill, D. W., Chou, M. M. C., Gallagher, J. J., and Brown, S., Mat. Res. Soc. Symp. Proc. 764, C6.6 (2003).Google Scholar
5. Reshchikov, M. A., Shahedipour, F., Korotkov, R. Y., Wessels, B. W., and Ulmer, M. P., J. Appl. Phys. 87, 3351 (2000).Google Scholar
6. Reshchikov, M. A., Morkoç, H., Molnar, R. J., Tsvetkov, D., and Dmitriev, V., Mat. Res. Soc. Symp. Proc. 743, L11.1 (2003).Google Scholar
7. Reshchikov, M. A., Huang, D., Yun, F., Visconti, P., He, L., Morkoç, H., Jasinski, J., Liliental-Weber, Z., Molnar, R. J., Park, S. S., and Lee, K. Y., J. Appl. Phys. 94, 5623 (2003), and references there in.Google Scholar
8. Reshchikov, M. A. and Korotkov, R. Y., Phys. Rev. B 64, 115205 (2001).Google Scholar
9. Reshchikov, M. A., Jasinski, J., Yun, F., He, L., Liliental-Weber, Z., and Morkoç, H., Mat. Res. Soc. Symp. Proc. 798, Y5.66 (2004).Google Scholar