Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T11:38:31.463Z Has data issue: false hasContentIssue false

Photoluminescence Mechanism of Silicon Quantum Dots and Wells

Published online by Cambridge University Press:  15 February 2011

Y. Kanemitsu
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
S. Okamoto
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

We discuss the mechanism of efficient photoluminescence (PL) from Si quantum dots and wells. Luminescence properties of SiO2-capped Si nanocrystals are different from those of H-terminated Si nanocrystals, but are very similar to those of Si quantum wells sandwiched by SiO2 layers. The size-dependence of PL properties and resonantly excited PL spectra of SiCb-capped Si dots and wells indicate that excitons are localized near the interface between the crystalline Si core and surface oxide layer, and the strong coupling of electronic and vibrational excitations causes the broad PL spectrum. The exciton localization plays an essential role in the efficient luminescence process in nanoscale Si/SiO2 systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2349 (1990).Google Scholar
2.Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., Appl. Phys. Lett. 59, 3168 (1992).Google Scholar
3.Matsumoto, T., Takahashi, J., Tamaki, T., Futagi, T., Mimura, H., and Kanemitsu, Y., Appl. Phys. Lett. 64, 226 (1994).Google Scholar
4.Kanemitsu, Y., Phys. Rep. 263, 1 (1995).Google Scholar
5.Delerue, C., Lannoo, M., and Allan, G., Phys. Rev. Lett. 76, 3038 (1996);Google Scholar
Hill, N.A. and Whaley, K.B., Phys. Rev. Lett. 76, 3039 (1996).Google Scholar
6.Kanemitsu, Y., Ogawa, T., Shiraishi, K., and Takeda, K., Phys. Rev. B 48, 4883 (1993).Google Scholar
7.Otobe, M., Kanai, T., Ifiiku, T., Yajima, H., and Oda, S., J. Non-cryst. Solids 198–200, 875 (1996).Google Scholar
8.Mimura, H., Matsumoto, T., and Kanemitsu, Y., Mater. Res. Soc. Symp. Proc. 358, 635 (1995).Google Scholar
9.Schuppler, S.Friedman, S.L., Marcus, M.A., Adler, D.L., Xie, Y.H., Ross, R.M., Chabal, Y.J., Harris, T.D., Brus, L.E., Brown, W.L., Chaban, E.E., Szajowski, P.F., Christman, S.B., and Citrin, P.H., Phys. Rev. B 52, 4910 (1995).Google Scholar
10.Kanemitsu, Y., Okamoto, S., Otobe, M., and Oda, S., to be published.Google Scholar
11.Ito, K., Ohyama, S., Uehara, Y., and Ushioda, S., Appl. Phys. Lett. 67, 2536 (1995).Google Scholar
12.Takagahara, T. and Takeda, K., Phys. Rev. B 46, 15578 (1992).Google Scholar
13.Proot, P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).Google Scholar
14.Wang, L.W. and Zunger, A., J. Chem. Phys. 100, 2394 (1994).Google Scholar
15.Kanemitsu, Y., Uto, H., Masumoto, Y., Matsumoto, T., Futagi, T., and Mimura, H., Phys. Rev. B 48, 2827 (1993).Google Scholar
16.Kanemitsu, Y., Shimizu, N., Komoda, T., Hemment, P.L.F., and Sealy, B.J., Phys. Rev. B 54, R14329 (1996).Google Scholar
17.Takahashi, Y., Furuta, T., Ono, Y., Ishiyama, T., and Tabe, M., Jpn. J. Appl. Phys. 34, 950 (1995).Google Scholar
18.Okamoto, S. and Kanemitsu, Y., to be published.Google Scholar
19.Kageshima, H., Surf. Sci. 357/358, 312 (1996).Google Scholar
20.Zhang, S.B. and Zunger, A., Appl. Phys. Lett. 63, 1399 (1993).Google Scholar
21.Lockwood, D.J., Lu, Z.H., and Baribeau, J.M., Phys. Rev. Lett. 76, 539 (1996).Google Scholar
22.Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Phys. Condens. Matter. 5, L91 (1993).Google Scholar
23.Kanemitsu, Y., Phys. Rev. B 53, 13515 (1996).Google Scholar
24.Okamoto, S. and Kanemitsu, Y., Phys. Rev. B 54, 16421 (1996).Google Scholar