Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-15T16:31:22.027Z Has data issue: false hasContentIssue false

Photoluminescence Studies of Si1-XGeXSi Heterostructures Grown by Lpcvd

Published online by Cambridge University Press:  21 February 2011

M.H. Nazare
Affiliation:
Departamento de Fisica, Universidade de Aveiro, 3800 Aveiro. PORTUGAL
A.J. Leal Duarte
Affiliation:
Departamento de Fisica, Universidade de Aveiro, 3800 Aveiro. PORTUGAL
G. Schmidt
Affiliation:
Institut fur Halbleitertechnik, RWTH Aachen, Sommerfeldstr.24, 51 Aachen. GERMANY
K. Heime
Affiliation:
Institut fur Halbleitertechnik, RWTH Aachen, Sommerfeldstr.24, 51 Aachen. GERMANY
Get access

Abstract

Band-gap luminescence from Si1-xGex/Si heterostructures grown by Low Pressure Chemical Vapour Deposition (LPCVD) is studied for a composition range of x=.04 to x=.22 and thickness from l00nm to 1300nm. Special attention is paid to the influence of the growth conditions. The growth temperature was varied between 820°C and 600°C. We compare results obtained from our samples with results in the literature obtained from similar samples grown by other techniques, namely by molecular beam epitaxy (MBE). We show that with a growth temperature of 650°C we have achieved samples exhibiting a luminescence spectrum dominated by the excitonic recombination at the alloy, free from dislocation lines and defect related recombination. The dependence of the luminescence with Ge concentration and thickness of the alloy layer is well described by theory. Results for boron doped layers are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 K.Terashima, , M.Tajima, and T.Tatsumi, , Appl. Lett. 57 (1990) 1925.Google Scholar
2 K.Terashima, , M.Tajima, , N.Skarashi, , T.Niiro, and Tatsumi, , Jpn.J.Appl.Phys. 30 (1991) 3601.Google Scholar
3 S.Fukatsu, , N.Usami, , A.Fujiwara, and Y.Shiraki, , Jpn.J.Appl.Phys. 31 (1992) L1018.Google Scholar
4 S.Fukatsu, , H.Yoshida, , N.Usami, , A.Fujiwara, , Y.Takahashi, , Y.Shiraki, and R.Tto, , Jpn.J.Appl.Phys. 31 (1992)L1319.Google Scholar
5 J.Brunner, , U.Menczigar, , M.Gail, , E.Friess, and G.Abstreiter, , Thin Solid Films 222 (1992) 27.Google Scholar
6 J.C.Sturm, , H.Manoharan, , L.C.Lenchyshyn, , M.L.W.Thewalt, , N.L.Rowell, , J.P.Noel, and D.C.Houghton, , Phys.Rev.Lett. 66 (1991) 1362.Google Scholar
7 D.Dutartre, , G.Bremond, , A.Souifi, and T.Benyattou, , Phys. Rev.B44 (1991) 11525.Google Scholar
8 J.Weber, and M.I.Alonso, ,Phys. Rev.B40 (1989) 5683.Google Scholar
9 D.J.Robbins, , L.T.Canham, , S.J.Barnett, , A.D.Pitt, and P.Calctt, , J.Appl.Pys. 71 (1992) 1470.Google Scholar
10 M.Wachter, , K.Thonke, , R.Sauer, , F.Schaffler, , H.J.Herzog, and E.Kasper, , Thin Solid Films 222 (1992) 10.Google Scholar