Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T23:57:00.978Z Has data issue: false hasContentIssue false

Photovoltaic Characterization of Trapping in Porous Silicon

Published online by Cambridge University Press:  28 February 2011

D. W. Boeringer
Affiliation:
University of North Carolina at Charlotte, Charlotte, NC 28223
R. Tsu
Affiliation:
University of North Carolina at Charlotte, Charlotte, NC 28223
Get access

Abstract

We report the first observation of the lateral photovoltaic effect in porous silicon. Contacts placed on either side of a porous silicon region develop a voltage up to several millivolts if the sample is asymmetrically illuminated. If the light spot is closer to one contact, the voltage will have one polarity; if it is closer to the other contact, the polarity will be opposite. In the case of n-type, the contact nearest the light spot is positive; for p-type, the contact nearest the light spot is negative In the region between the contacts, the photovoltage varies almost linearly with the position of the light spot, over a distance 4.5 cm across. The origin of our lateral photoeffect may be explained by the trapping of photoexcited carriers by a pair of dangling bond centers in porous silicon. In the case of p-type, the photogenerated electrons are trapped by the dangling bond states while holes diffuse away in the substrate. The situation for n-type is opposite; holes are trapped by the dangling bond states while electrons diffuse away in the substrate. This differs from the conventional lateral photoeffect, which arises under the nonuniform illumination of a junction between two layers of differing conductivities. Hamamatsu sells silicon-based position-sensitive detectors with a resolution down to 0.1 µm. The possibility of using this lateral photoeffect to characterize these dangling bond states in porous silicon as well as several possible device applications will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tischler, M. A., Collins, R. T., Stathis, J. H., and Tsang, J. C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
2 Yokomichi, H., Takakura, H., and Kondo, M., Jpn. J. Appl. Phys. 32, L365 (1993).Google Scholar
3 Ookubo, N., Ono, H., Ochiai, Y., Mochizuki, Y., and Matsui, S., Appl. Phys. Lett., 61, 940 (1992).Google Scholar
4 Tsai, C., Li, K.-H., Campbell, J. C., Hance, B. K., and White, J. M., J. Electron. Mater. 21, 589 (1992).Google Scholar
5 Collins, R. T., Tischler, M. A., and Stathis, J. H., Appl. Phys. Lett. 61, 1649 (1992).Google Scholar
6 Smestad, G., Kunst, M., and Vial, C., Sol. Energy Mater. Sol. Cells 26, 277 (1992).Google Scholar
7 Zimmermann, H., Cocks, F. H., and Gösele, U., Mater. Chem. Phys. 32, 310 (1992).Google Scholar
8 Yeh, C. C., Y, Klaus. Hsu, J., Samanta, L. K., Chen, P. C., and Hwang, H. L., Appl. Phys. Lett. 62, 1617 (1993).Google Scholar
9 Yu, L. Z. and Wie, C. R., Electron. Lett. 28, 911 (1992).Google Scholar
10 Lue, J. T., Lo, K. Y., Ma, S. K., Chen, C. L., and Chang, C. S., Solid State Commun. 86, 593 (1993)Google Scholar
11 Schottky, W., Phys. Z. 31, 913 (1930).Google Scholar
12 Wallmark, J. T., Proc. IRE 45, 474 (1957).Google Scholar
13 Xu, Z. Y., Gal, M., and Gross, M., Appl. Phys. Lett. 60, 1375 (1992).Google Scholar
14 Mauckner, G., Thonke, K., and Sauer, R., Phys, J..: Condens. Matter 5, L9 (1993).Google Scholar
15 Zheng, X. L., Chen, H. C., and Wang, W., J. Appl. Phys. 72, 3841 (1992).Google Scholar
16 Stevens, P. D. and Glosser, R., Appl. Phys. Lett. 63, 803 (1993).Google Scholar
17 Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993).Google Scholar
18 Poindexter, E. H., Gerardi, G. J., Rueckel, M.-E., Caplan, P. J., Johnson, N. M., and Biegelsen, D. K., J. Appl. Phys. 56, 2844 (1984).Google Scholar
19 Petrov, A. V. and Petrukhin, A. G., Fiz. Tekh. Poluprovodn. 28, 82 (1994) [Semicond. 28, 49 (1994)].Google Scholar
20 Lee, W. H., Lee, H., and Lee, C., J. Non-crys. Sol. 164166, 965 (1993).Google Scholar
21 Filios, A. A., Master's thesis, University of North Carolina at Charlotte, 1994.Google Scholar