Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T18:36:34.287Z Has data issue: false hasContentIssue false

Piezoelectric Force Sensing Pb(Zr,Ti)O3 Microcantilever Array for Multiprobe Scanning Force Microscopy

Published online by Cambridge University Press:  15 February 2011

T. Itoh
Affiliation:
RCAST, The University of Tokyo, Komaba 4–6–1, Meguro-ku, Tokyo 153, Japan, itoh@suga.rcast.u-tokyo.ac.jp
C. Lee
Affiliation:
Mechanical Engineering Laboratory, AIST, MITI, Namiki 1–2, Tsukuba, Ibaraki 305, Japan
J. Chu
Affiliation:
RCAST, The University of Tokyo, Komaba 4–6–1, Meguro-ku, Tokyo 153, Japan, itoh@suga.rcast.u-tokyo.ac.jp
T. Suga
Affiliation:
RCAST, The University of Tokyo, Komaba 4–6–1, Meguro-ku, Tokyo 153, Japan, itoh@suga.rcast.u-tokyo.ac.jp
Get access

Abstract

This paper reports on a multiprobe scanning force microscope (SFM) utilizing an array of individually controlled piezoelectric Pb(Zr,Ti)O3 (PZT) microcantilevers. Each cantilever is unimorph beam including a sol-gel derived PZT thin film that has high piezoelectric constants in comparison with sputtered ZnO films. The cantilever is excited and actuated in z direction by applying ac and feedback dc voltages to the PZT layer. The variation of vibration amplitude is detected by measuring the change of current through the PZT layer. The 200-μm-long PZT microcantilever with the natural resonance frequency of 63.8 kHz has the high actuation sensitivity of 150 nmN and the maximum range of more than 1.5 μm. By actuating the self-excited cantilever to keep the current constant, we have succeeded in independent dynamic operation without z feedback actuation of the sample-side scanner. We have obtained independent parallel 2 × 1 images using two cantilevers of the array.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Itoh, T. and Suga, T., Nanotechnology 4, 218(1993).Google Scholar
2. Itoh, T., Ohashi, T. and Suga, T., IEICE Trans. Electron. E78–C, 146(1995).Google Scholar
3. Lee, C., Itoh, T. and Suga, T., in Proceedings of IUMRS-ICEM'94 Symp., Hinschu, Taiwan (Materials Research Society-Taiwan, Taiwan, 1994), p.21.Google Scholar
4. Fujii, T., Watanabe, S., Suzuki, M. and Fujiu, T., J. Vac. Sci. Technol. B 13, 1119(1995).Google Scholar
5. Itoh, T. and Suga, T., in Proceedings of Transducers '95, Stockholm, Sweden (Royal Swedish Academy of Engineering Science IVA, Stockholm, 1995), p.632.Google Scholar
6. Tortonese, M., Yamada, H., Barrett, H, R. C. and Quate, C. F., in Proceedings of Transducers '91. IEEE publication 91 CH2817–5, p. 448(1991).Google Scholar
7. Tortonese, M., Barrett, R. C. and Quate, C. F., Appl. Phys. Lett. 62, 834(1993).Google Scholar
8. Blanc, N., Brugger, J., de Rooji, N. F. and Diirig, U., J. Vac. Sci. Technol. B 14, 901(1996).Google Scholar
9. Takata, K., Rev. Sci. Instrum. 64, 2598(1993).Google Scholar
10. Minne, S. C., Manalis, S. R. and Quate, C. F., Appl. Phys. Lett. 67, 3918(1995).Google Scholar
11. Minne, S. C., Manalis, S. R., Atalar, A. and Quate, C. F., J. Vac. Sci. Technol. B 14, 2456(1996).Google Scholar
12. Polla, D. L., Ye, C., Schiller, P., Tamagawa, T., Robbins, W. P., Glumac, D., and Hsueh, C. C. in Ferroelectric Thin Films II, edited by Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Proc. 243, Pittsburgh, PA, 1992), p. 5560.Google Scholar
13. Robbins, W. P., Polla, D. L., and Glumac, D. E., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 37, 454 (1991).Google Scholar
14. Flynn, A. M., Tavrow, L. S., Bart, S. F., Brooks, R. A., Ehrlich, D. J., Udayakumar, K. R., and Cross, L.E., J. Microelectromechanical Systems 1, 44(1992).Google Scholar
15. Itoh, T., Ohashi, T. and Suga, T., in Proceedings of MEMS '96, San Diego, CA (IEEE publication 96 CH35856, p. 451 (1996).Google Scholar
16. Lee, C., Kawano, S., Itoh, T. and Suga, T., J. Mater. Sci. 31, 4559(1996).Google Scholar
17. Sato, E., Huang, Y., Kosec, M., Bell, A., and Setter, N., Appl. Phys. Lett. 65, 2678 (1994).Google Scholar
18. Francis, L. F. and Payne, D. A., J. Am. Ceram. Soc. 74, 3000 (1991).Google Scholar
19. Yi, G. and Sayer, M., Ceram. Bull. 70, 1173(1991).Google Scholar