Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T20:35:36.058Z Has data issue: false hasContentIssue false

Plutonium Silicate Alteration Phases Produced by Aqueous Corrosion of Borosilicate Glass

Published online by Cambridge University Press:  10 February 2011

J. A. Fortner
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
C. J. Mertz
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
A. J. Bakel
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
R. J. Finch
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
D. B. Chamberlain
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Borosilicate glasses loaded with ∼10 wt % plutonium were found to produce plutonium-silicate alteration phases upon aqueous corrosion under a range of conditions. The phases observed were generally rich in lanthanide (Ln) elements and were related to the lanthanide orthosilicate phases of the monoclinic Ln2SiO5 type. The composition of the phases was variable regarding [Ln]/[Pu] ratio, depending upon type of corrosion test and on the location within the alteration layer. The formation of these phases likely has implications for the incorporation of plutonium into silicate alteration phases during corrosion of titanate ceramics, high-level waste glasses, and spent nuclear fuel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bakel, A. J., Mertz, C. J., Chamberlain, D. B., Buck, E. C., Wolf, S. F., and Fortner, J. A., Proceedings of the 189 International Congress on Glass, San Francisco, July 5-10 1988.Google Scholar
2 Bibbler, N. E., Ramsey, W. G., Meeker, T. F., and Pareizs, J. M., Mat. Res. Symp. Proc. 412, 65 (1996).Google Scholar
3 Meaker, T. F., Peeler, D. K., Marra, J. C., Pareizs, J. M., and Ramsey, W. G., Mat. Res. Symp. Proc. 465, 1281 (1997).Google Scholar
4 Department of Energy, Record of Decision for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic Environmental Impact Statement 62 FR3014, Office of the Federal Register, Washington D. C., January 14, 1997.Google Scholar
5 Lumpkin, G. R., Smith, K. L., Blackford, M. G., Hart, K. P., McGlinn, P., Gieré, R., and Williams, C. T., Proceedings of the 9th Pacific Basin Nuclear Conference, (Sydney, Australia, May 1-6, 1994).Google Scholar
6 See, for instance, Buck, E. C. and Bates, J. K., Applied Geochemistry, 14, 635 (1999); J.A. Fortner, S F. Wolf, E.C. Buck, C.J. Mertz, and J.K. Bates, Mater. Res. Soc. Symp. Proc. 465, 165 (1997).Google Scholar
7 Kersting, A. B., Eford, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., and Thompson, J. L., Nature 397, 56 (1999).Google Scholar
8 Wronkiewicz, D. J. et al. , Mat. Res. Symp. Proc. 294, 183 (1993); D. J. Wronkiewicz, et al., Mat. Res. Symp. Proc. 333, 259 (1994).Google Scholar
9 International Centre for Diffraction Data, Newtown Square, PA 19073-3273, U.S.A.Google Scholar
10 Speer, J. A. and Ribbe, P. H., in Orthosilicates, Reviews in Mineralogy Vol. 5, Ribbe, H., ed. (Mineralogical Society of America, Washington, D. C., 1982) pp. 429450.Google Scholar
11 Smolin, Yu. I. and Tkachev, S. P., Soy. Phys.-Crystal. 14 14 (1969).Google Scholar