Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T18:49:32.741Z Has data issue: false hasContentIssue false

Polaritonic materials fabricated and tested with ultrashort-pulse lasers

Published online by Cambridge University Press:  01 February 2011

David W. Ward
Affiliation:
The Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Eric Statz
Affiliation:
The Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Thomas Feurer
Affiliation:
The Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Keith A. Nelson
Affiliation:
The Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

Using femtosecond laser machining, we have fabricated photonic bandgap materials that influence propagation of phonon-polaritons in ferroelectric crystals. Broadband polaritons were generated with impulsive stimulated Raman scattering (ISRS) using an ultrashort laser pulse, and the spatial and temporal evolution of the polaritons were imaged as they propagated through the fabricated structures with polariton real-space imaging. These techniques offer a new approach to optical materials design.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Born, M. & Huang, K. (1954) Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford).Google Scholar
2. Barker, A. S. & Louden, R. (1967) Phys. Rev. 158, 433445.Google Scholar
3. Dougherty, T. P., Wiederrecht, G. P. & Nelson, K. A. (1992) JOSA B 9, 21792189.Google Scholar
4. Lyddane, R. H., Sachs, R. G. & Teller, E. (1941) Phys. Rev. 59, 673676.Google Scholar
5. Huang, K. C., Bienstein, P., Joannopoulos, J. D., Nelson, K. A. & Fan, S. (2003) Phys. Rev. Lett. 90, 196402.Google Scholar
6. Huang, K. C., Bienstman, P., Joannopoulos, J. D. & Nelson, K. A. (2003) Phys. Rev. B 68, 075209.Google Scholar
7. Auston, D. H., Cheung, K. P., Valdmanis, J. A. & Kleinman, D. A. (1984) Physical Review Letters 53, 15551558.Google Scholar
8. Koel, R. M., Adachi, S. & Nelson, K. A. (1999) J. Phys. Chem. A. 103, 1026010267.Google Scholar
9. Ward, D. W., Beers, J. D., Feurer, T., Statz, E. R., Stoyanov, N. S. & Nelson, K. A. (2004) Opt. Lett. 29, 26712673.Google Scholar
10. Stoyanov, N. S., Ward, D. W., Feurer, T. & Nelson, K. A. (2002) Nature Materials 1, 9598.Google Scholar
11. Stoyanov, N. S., Feurer, T., Ward, D. W. & Nelson, K. A. (2003) Appl. Phys. Lett. 82, 674676.Google Scholar
12. Ward, D. W., Statz, E. R., Stoyanov, N. S., Feurer, T., Chen, Z. & Nelson, K. A. (2004) Phys. Rev. B, submitted.Google Scholar
13. Ward, D. W., Statz, E. R., Beers, J. D., Stoyanov, N. S., Feurer, T., Roth, R. M., Osgood, R. M. & Nelson, K. A. (2003) in 2003 MRS Fall Meeting (Materials Research Society, Boston, MA), Vol. 797, pp. W5.9.16.Google Scholar
14. Ward, D. W., Statz, E. R., Nelson, K. A., Roth, R. M. & Osgood, R. M. (2004) Appl. Phys. Lett., in press.Google Scholar
15. Talbot, H. F. (1836) Philos. Mag. 9, 401407.Google Scholar
16. Glezer, E. N. & Mazur, E. (2001) Appl. Phys. Lett. 71, 862864.Google Scholar
17. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. (1995) Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton).Google Scholar
18. Johnson, S. G. & Joannopoulos, J. D. (2002) Photonic Crystals: The Road from Theory to Practice (Kluwer, New York).Google Scholar