Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:17:29.499Z Has data issue: false hasContentIssue false

Polymer Functionalized Carbon nanotubes for sensor application

Published online by Cambridge University Press:  01 February 2011

Narasimha Harindra Vedala
Affiliation:
Mechanical and Materials Engineering Department, Florida International University, Fort Lauderdale, FL 33322, U.S.A.
Young C. Choi
Affiliation:
Mechanical and Materials Engineering Department, Florida International University, Fort Lauderdale, FL 33322, U.S.A.
X. Y. Zhou
Affiliation:
Hemispheric Center for Environmental Technology, Florida International University, Miami, FL 33174, U.S.A.
Gene Kim
Affiliation:
Motorola Inc, 8000 W. Sunrise Blvd, Fort Lauderdale, FL 33322, U.S.A.
WonBong Choi
Affiliation:
Mechanical and Materials Engineering Department, Florida International University, Fort Lauderdale, FL 33322, U.S.A.
Get access

Abstract

Surface modification of carbon nanotubes with polyvinyl alcohol (PVOH) showed detection for humidity variation implying a possible application as a nanoscale humidity sensor. Wettability studies on single-wall, Y junction single wall and multiwall carbon nanotubes revealed that these nanotubes tend to become highly hydrophilic surfaces by this functionalisation. From the raman analysis it was determined that the majority of the nanotubes in our Y-junction single wall nanotubes were semiconducting in nature. The conductivity studies revealed that the Y junction nanotubes with PVOH functionalisation show large change in conductivity for varying relative humidity (RH). We propose a possible charge transport mechanism in these functionalized nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choi, W. B., Cheong, B. H., Kim, J. J., Ju, J., Bae, E., and Chung, G., Advanced Functional Materials 13, 80 (2003).Google Scholar
2. Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q. and Dai, H., NanoLetters 3(3), 347351 (2000).Google Scholar
3. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. and Meyyappan, M., NanoLetters 3(7), 929933(2003).Google Scholar
4. Valentini, L., Armentano, I., Kenny, J. M., Diamond and Related Materials 14 121124(2004).Google Scholar
5. Naguib, N., Ye, H., Gogotsi, Y., Yazicioglu, A. G., Megaridis, C. M. and Yoshimura, M., Nano Letters 4(11), 22372243(2004).Google Scholar
6. Chen, H. W., Wu, R. J., Chan, K. H., Sun, Y. L. and Su, P.G., Sensors and Actuators B, (2004)Google Scholar
7. Penza, M. and Anisimkin, V. I., Sensors and Actuators A76, 162166(1999).Google Scholar
8. Rittersma, Z. M., Sensors and Actuators A96, 196210(2002).Google Scholar
9. Yang, M. R. and Chen, K. S., Sensors and Actuators B49, 240247(1998).Google Scholar
10. Sakai, Y., Sadaoka, Y. and Matsuguchi, M., Sensors and Actuators B35–36, 8590(1996).Google Scholar
11. Wang, H., Feng, C. D., Sun, S. L., Segre, C. U. and Stetter, J. R., Sensor and Actuators B40, 211216(1997).Google Scholar
12. Kulanthaisami, S., Mangalaraj, D. and Narayandass, S.A. K., Eur, Polym. J. 31(10), 969975(1995).Google Scholar
13. Shaffer, M. S. P. and Windle, A. H., Advanced Materials 11(11), 937941(1999).Google Scholar
14. Kozlov, M., Quarmyne, M., Chen, W. and McCarthy, T. J., Macromolecules 36, 60546059(2003).Google Scholar
15. Choi, Y. C., Choi, W., presented at AVS 51st conference, Anaheim, CA, 2004 (unpublished)Google Scholar
16. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I, Suzuki, S., Ohtsuka, Y. and Achiba, Y., Sythetic Metals 103, 25552558 (1999).Google Scholar