Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T00:45:26.820Z Has data issue: false hasContentIssue false

Porous Alumina Template based Versatile and Controllable Direct Synthesis of Silicon nanowires

Published online by Cambridge University Press:  21 May 2012

Ki-Hwan Kim
Affiliation:
LPICM, UMR 7647, Ecole Polytechnique Route de Saclay, 91128 PALAISEAU, FRANCE
Emmanuel Lefeveure
Affiliation:
LPICM, UMR 7647, Ecole Polytechnique Route de Saclay, 91128 PALAISEAU, FRANCE
Marc Châtelet
Affiliation:
LPICM, UMR 7647, Ecole Polytechnique Route de Saclay, 91128 PALAISEAU, FRANCE
Costel-Sorin Cojocaru
Affiliation:
LPICM, UMR 7647, Ecole Polytechnique Route de Saclay, 91128 PALAISEAU, FRANCE
Get access

Abstract

Highly densely packed, self-organized silicon nanowires with very narrow diameter distribution were synthesized within porous anodic alumina templates with electrodeposited catalytic metal nanoparticles. For successful catalytic metal nanoparticle deposition, electrochemical-, and chemical barrier layer thinning process was investigated following anodization process. Controlled pulsed electrodeposition process was carried out for a volume calibration of desired catalytic metal nanoparticle deposition inside nanopore arrays using different metal-ion containing electrolyte. Not only single metal nanoparticles, but also multi metal nanoparticles layers were filled inside PAA to enhance metal filling aspect, and to control the volume of nanoparticles more precisely. Using multilayered metal nanoparticles resulted on different SiNW’s growth behavior depending on the types of underlying metal nanoparticles.

SiNWs were successfully synthesized using hot-filament assisted chemical vapor deposition system. Although silicon precursor gas can generally be dissociated at relatively low temperatures, the use of a hot filament activation help decreasing process temperature, and also, highly activated atomic hydrogen generation via the tungsten hot filament placed at gas inlet helps preventing parasitic amorphous silicon deposition on either the alumina membrane surface or the pore wall which hinders appropriate growth of SiNWs in PAA by nanopores clogging. Such densely packed, self-organized SiNWs are of high interest in many application fields like nanoelectronics, optoelectronics, and energy storage/conversion devices etc.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Law, Matt, Goldberger, Joshua and Yang, Peidong. Annual Review Meterial Research. 34, 83 (2004)CrossRefGoogle Scholar
Cui, Y., Zhong, Z., Wang, D., Wang, W. U., and Lieber, C. M., Nano Lett., 3, 149 (2003)CrossRefGoogle Scholar
Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., Huang, J., and Lieber, C. M., Nature. 449, 885 (2007)CrossRefGoogle Scholar
Cui, Y., Wei, Q., Park, H., and Lieber, C. M., Science, 293, 1289 (2001)CrossRefGoogle Scholar
Chan, C. K., Peng, H., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A., and Cui, Y., Nature Nanotechnology. 3, 31 (2008)CrossRefGoogle Scholar
Schimidt, V., Wittemann, J. V., Senz, S., and Gösele, Ulrich, Adv. Mater., 21, 2681 (2009)CrossRefGoogle Scholar
Wagner, R. S., and Ellis, W. C., App. Phys. Lett., 4, 89 (1964)CrossRefGoogle Scholar
Cao, G., and Liu, D., Advances in Colliod and Interface Science, 136, 45 (2008)CrossRefGoogle Scholar
Keller, F., Hunter, M. S., Robinson, D. L., J. Electrochem. Soc., 100, 411 (1953)CrossRefGoogle Scholar
O’Sullivan, J. P., and Wood, G. C., Proc. R. Soc. Lond. A, 317, 511 (1970)CrossRefGoogle Scholar
Marquardt, B., Eude, L., Gowtham, M., Cho, G., Jeong, H. J., Châtelet, M., Cojocaru, C. S., Kim, B. S. and Pribat, D., Nanotechnology, 19, 405607 (2008)CrossRefGoogle Scholar
Nielsch, K., Müller, F., Li, A.-P., Gösele, U., Adv. Mater., 12, 582 (2000)3.0.CO;2-3>CrossRefGoogle Scholar
Kim, K. H., Lefeuvre, E., Gohier, A., Chatelet, M., Kim, B. S., Pribat, D. and Cojocaru, C. S., Proc. SPIE, 7761, 776109 (2010)CrossRefGoogle Scholar
Lefeuvre, E., Kim, K.H., He, Z.B., Maurice, J.-L., Châtelet, M., Pribat, D., Cojocaru, C.S., Thin Solid Films, 519, 4603 (2011)CrossRefGoogle Scholar
Pribat, D., Cojocaru, C.S., Gowtham, M., Marquardt, B., Wade, T., Wegrowe, J.E., Kim, B.S., C. R. Physique, 10, 320 (2009)CrossRefGoogle Scholar
Furneaux, R. C., Rigby, W. R., and Davidson, A. P., Nature, 337, 147 (1989)CrossRefGoogle Scholar
Chen, S.-Y., Yeh, P.-H., Wu, W.-W., Chen, U.-S., Chueh, Y.-L., Yang, Y.-C., Gwo, S., and Chen, L.-J., ACS Nano, 5, 9202 (2011)CrossRefGoogle Scholar
Song, Y., Schmitt, A. L., and Jin, S.. Nano Lett., 7, 965 (2007)CrossRefGoogle Scholar