Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-21T05:14:42.706Z Has data issue: false hasContentIssue false

Potential Role for Charged Dangling Bonds in Transient-Lesr of Light-Soaked a-Si:H

Published online by Cambridge University Press:  21 February 2011

Z. M. Saleh
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd. 1–18–13 Hashiridani, Hirakata, Osaka 573 (Japan).
H. Tarui
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd. 1–18–13 Hashiridani, Hirakata, Osaka 573 (Japan).
S. Tsuda
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd. 1–18–13 Hashiridani, Hirakata, Osaka 573 (Japan).
S. Nakano
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd. 1–18–13 Hashiridani, Hirakata, Osaka 573 (Japan).
Y. Kuwano
Affiliation:
Functional Materials Research Center, SANYO Electric Co., Ltd. 1–18–13 Hashiridani, Hirakata, Osaka 573 (Japan).
Get access

Abstract

Transient light-induced electron spin resonance (LESR) at 120 K, has been used to investigate deep defects in a-Si:H through changes in the lineshape. When the lineshape is deconvoluted into narrow and broad components, the narrow component is found to decrease, relative to the broad component, with increasing light-soaking time. Similar changes are not observed, however, in as-deposited or annealed films regardless of deposition and annealing conditions. An important role for charged dangling bonds is proposed to explain these changes and we suggest that intrinsic (stable) and light-induced (metastable) defects play different roles in transient-LESR and may occupy different energy distributions in the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Dersch, H., Stuke, J. and Beichler, J., Appl. Phys. Lett. 38, 456 (1981).Google Scholar
3. Stutzmann, M., Jackson, W. B. and Tsai, C. C., Phys. Rev. B, 32, 23 (1985).Google Scholar
4. Smith, Z. E. and Wagner, S., Phys. Rev. B, 32, 5510 (1985).Google Scholar
5. Sakata, I., Yamanaka, M. and Hayashi, Y.. J. Appl. Phys. 69, 2561 (1991).CrossRefGoogle Scholar
6. Gunes, M., Malone, C. T., Nique, J. L., Fonash, S. J. and Wronski, C. R., in Proc, of the 6th Int. Photovoltaic Science and Engineering Conf., edited by Das, B. K. and Singh, S. N. (New Delhi, India, 1992) p. 61.Google Scholar
7. Han, D. and Fritzsche, H., J. Non-Cryst. Solids, 59+60, 397 (1983).Google Scholar
8. Pankove, J. I., Appl. Phys. Lett, 32, 812 (1978).CrossRefGoogle Scholar
9. Pankove, J. I. and Berkeyheiser, J. E., Appl. Phys. Lett. 37, 705 (1880).Google Scholar
10. Yoshida, M. and Morigaki, K., J. Phys. Soc. Jpn. 59, 1733 (1990).Google Scholar
11. Wang, W. and Fritzsche, H., in Advances in amorphous Semiconductors, Vol. 1B, edited by Fritzsche, H. (World Scientific, Singapore 1989) p. 779.Google Scholar
12. Street, R. A. and Biegelson, D. K., J. Non-Cryst. Solids, 35+36, 651 (1980).Google Scholar
13. Saleh, Z. M. et al., Jpn. J. Appl. Phys. 31, 995 (1992).Google Scholar
14. Ristein, J., Hautala, J. and Taylor, P. C., Phys. Rev. B, 40, 88 (1989).Google Scholar
15. Crandall, R.S., in Semiconductors and Semimetals, Vol. 21B, edited by Pankove, J. I. (Academic, New York 1984), p. 245.Google Scholar
16. Simmons, J.G. and Taylor, G. W., Phys. Rev. B, 4, 502 (1971).CrossRefGoogle Scholar
17. Street, R. A., Nights, J. C. and Biegelson, D. K., Phys. Rev. B, 18, 1880 (1978).Google Scholar
18. Wilson, B. A., Sergent, A. M. and Harbison, J. P., Phys. Rev. B, 30, 2282 (1984).Google Scholar
19. Gu, S. Q., Taylor, P. C. and Ristein, J., J. Non-Cryst. Solids, 137+138, 591 (1991).Google Scholar
20. McMahon, T. J., Solar Cells, 30, 235 (1991).Google Scholar