Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T15:38:19.305Z Has data issue: false hasContentIssue false

Precision Microwave Applicators and Systems for Plasma and Materials Processing

Published online by Cambridge University Press:  21 February 2011

Jes Asmussen
Affiliation:
Department of Electrical Engineering, Michigan State University, East Lansing, MI 48824
Richard Garard
Affiliation:
Wavemat Inc., 858 Phoenix Drive, Ann Arbor, MI 48104
Get access

Abstract

Modern applications of microwave energy have imposed new requirements upon microwave processing systems. Interest in energy efficiency, processing uniformity and control of process cycles has placed new design conditions upon microwave power oscillators, microwave systems and microwave applicator design. One approach of meeting new application requirements is the use of single-mode or controlled multimode applicators. The use of a single-mode applicator for plasma generation and materials processing will be presented. Descriptions of actual applicator designs for heating, curing and processing of solid materials and the generations of high and low pressure discharges will be given. The impact of these applicators on the total microwave system including the microwave power source will be described. Specific examples of applicator and associated microwave systems will be detailed for the applications of (1) plasma thin film deposition and (2) the precision processing and diagnosis of materials. Methods of process control and diagnosis, control of process uniformity and process scale up are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Asmussen, J. and Root, J., Appl. Phys. Lett. 44, 396 (1984).CrossRefGoogle Scholar
2. Root, J. and Asmussen, J., Rev. Sci. Instrum. 56, 1511 (1985).CrossRefGoogle Scholar
3. Asmussen, J. and Dahimene, M., J. Vac. Sci. Technol. B5, 328 (1987).Google Scholar
4. Mahoney, L. and Asmussen, J., Rev. Sci. Instrum (1988).Google Scholar
5. Whitehair, S., Asmussen, J. and Nakanishi, S., Appl. Phys. Lett. 44, 1014 (1984).CrossRefGoogle Scholar
6. Whitehair, S., Asmussen, J., and Nakanishi, S., J. Propul. Power 3, 136 (1987).CrossRefGoogle Scholar
7. Hopwood, J., Dahimene, M., Reinhard, D.K. and Asmussen, J., J. Vac. Sci. Technol. B6, 268 (1988).Google Scholar
8. Hopwood, J., Reinhard, D.K. and Asmussen, J., to be presented at the 32nd International Symposium on Electron, Ion and Photon Beams, May 31-June 3, 1988.Google Scholar
9. Asmussen, J., Mallavarpu, R., Hamann, J.R. and Park, H.C., Proc. IEEE 62, 109 (1974).Google Scholar
10. Mallavarpu, R., Hawley, M.C. and Asmussen, J., IEEE Trans. Plasma Sci PS–6, 341 (1978).Google Scholar
11. Brake, M., Hinkle, J., Asmussen, J., Hawley, M.N. and Kerber, R., Plasma Chem. Plasma Process. 3, 63 (1983).CrossRefGoogle Scholar
12. Private communication with Norton Christensen Inc.Google Scholar
13. Asmussen, J., Lin, H.H., Manring, B. and Fritz, R., Rev. Sci. Instrum. 58, 1477 (1987).Google Scholar
14. Jow, J., Hawley, M.C., Finzel, M., Asmussen, J., Lin, H.H., Manring, B. IEEE Trans. Microwave Theory, Tech. MTT–35, 1435 (1987).CrossRefGoogle Scholar
15. Roppel, T., Reinhard, D.K. and Asmussen, J., J. Vac. Sci Technol. B4, 295 (1986).CrossRefGoogle Scholar