Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:57:32.343Z Has data issue: false hasContentIssue false

Predictive Model for B Diffusion in Strained SiGe Based on Atomistic Calculations

Published online by Cambridge University Press:  01 February 2011

Chihak Ahn
Affiliation:
chahn@u.washington.edu, ., ., ., ., ., United States
Jakyoung Song
Affiliation:
jakyoung_song7@yahoo.com, University of Washington, Electrical Engineering, Seattle, WA, 98195, United States
Scott T Dunham
Affiliation:
dunham@ee.washington.edu, University of Washington, Electrical Engineering, Seattle, WA, 98195, United States
Get access

Abstract

Using an extensive series of first principles calculations, we have developed general models for the change in energy of boron migration state via interstitial mechanism as a function of local alloy configuration. The model is based on consideration of both global strain compensation as well as local effects due to nearby arrangement of Ge atoms. We have performed KLMC (Kinetic Lattice Monte Carlo) simulations based on change in migration energy to explain the reduced B diffusion in strained SiGe and compared our results to experimental observations. These models include significant effects due to both global stress and local chemical effects, and accurately predict the B diffusivity measured experimentally in strained SiGe on Si as a function of Ge content.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D., Appl. Phys. Lett. 66 (5), 580582 (1995).Google Scholar
2 Zangenberg, N.R., Fage-Pedersen, J., Hansen, J. L., Larsen, A.N., J. Appl. Phys. 94, 3883 (2003).Google Scholar
3 Lever, R.F., Bonar, J.M., and Willoughby, A.F.W., J. Appl. Phys. 83, 1988 (1998).Google Scholar
4 Hattendorf, J., Zeitz, W.-D., Schröder, W., and Abrosimov, N.V., Physica B 340–342, 858 (2003).Google Scholar
5 Wang, L., Clancy, P., and Murthy, C.S., Phy. Rev. B 70, 165206 (2004).Google Scholar
6 Ural, A., Griffin, P.B., and Plummer, J.D., J. Appl. Phys. 85, 6440 (1999).Google Scholar
7 Windl, W., Bunea, M.M., Stumpf, R., Dunham, S.T., and Masquelier, M.P., Phys. Rev. Lett, 83, 4345 (1999).Google Scholar
8 Diebel, M., Ph.D Thesis, Univ. of Washington (2004).Google Scholar
9 Vanderbilt, D., Physical Review B 41, 7892 (1990); G. Kresse and J. Hafner, J. Phys: Cond. Matter 6, 8245 (1994).Google Scholar
10 Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); 49, 14251 (1994); G. Kresse and J. Furthmuller, Comput. Mater. Sci. 66, 16 (1996); Phys. Rev. B 55, 11169 (1996).Google Scholar
11 Henkelman, G., Uberuaga, B. and Jónsson, H., J. Chem. Phys. 113, 9901 (2000).Google Scholar
12 Ahn, C., Diebel, M., and Dunham, S.T., JVST B 24, 700 (2006).Google Scholar
13 Dunham, S.T., Diebel, M., Ahn, C., and C.-L. Shih, JVST B 24, 456 (2006).Google Scholar
14 Moriya, N., Feldman, L.C., Luftman, H.S., King, C.A., Bevk, J., and Freer, B., Phys. Rev. Lett. 71, 883 (1993).Google Scholar
15 Fang, T.T., Fang, W.T.C., Griffin, P.B., and Plummer, J.D., Appl. Phys. Lett. 68, 791 (1996).Google Scholar