Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T05:39:56.405Z Has data issue: false hasContentIssue false

Preparation of Chromophoric Dipolar Dendrons as Second-Order Nonlinear Optical Material

Published online by Cambridge University Press:  10 February 2011

S. Yokoyama
Affiliation:
Communications Research Laboratory, syoko@crl.go.jp, 588-2, Iwaoka, Nishi-ku, Kobe 651-24, JAPAN
S. Mashiko
Affiliation:
Communications Research Laboratory, syoko@crl.go.jp, 588-2, Iwaoka, Nishi-ku, Kobe 651-24, JAPAN
Get access

Abstract

Dendritic macromolecules, called “dendrons,” having a branching structure modified with an electron donor/acceptor functionalized azobenzene chromophore have been synthesized. The structurally different dendrons possess different numbers, 1, 3, 7, and 15, of chromophore units. The second harmonic generation (SHG) of dendrons was measured in the molecular oriented thin films prepared by the Langmuir-Blodgett film transfer technique. In such structurally organized thin films, individual chromophores coherently contribute to the increase in the molecular hyperpolarizability of dendrons. The SHG activity became large as the numbers of branching units of dendrons increased. The highest molecular hyperpolarizability was found to be <8000×10−30 esu for dendron containing 15 chromophoric units. The SHG results suggest that the structure of dendrons synthesized is uniaxially dipolar, and that there is a particular merit in this structure for the generation of SHG.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ulman, A., Willand, S. C. S., Köhler, W., Robello, D. R., Williams, D. J., and Handley, L., J. Am. Chem. Soc., 112, p. 7083 (1990).Google Scholar
2. Prasad, P. N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991.Google Scholar
3. Marowsky, G. and Steinhoff, R, Opt. Lett. 13, p. 707 (1988).Google Scholar
4. Marowsky, G., Chi, L. F., Möbuis, D., Steinhoff, R., Shen, Y. R., Dorsch, D., and Rieger, B., Chem. Phys. Lett., 147, p. 420 (1988).Google Scholar
5. Lupo, D., Prass, W., Scheunemann, U., Laschewsky, A., Ringsdorf, Helmut, and Ledoux, I., J. Opt. Soc. Am. B, 5, p. 300 (1988).Google Scholar
6. Kauranen, M., Verbiest, T., Boutton, C., Teerenstra, M. N., Clays, K., Schouten, A. J., Nolte, R. J. M., and Persoons, A., Science, 270, p. 966 (1995).Google Scholar
7. Yokoyama, S., Nakahama, T., Otomo, A., ans Mashiko, S., Chem. Lett., p. 1,137 (1997).Google Scholar
8. Carpenter, M. A., Willand, C. S., Penner, T. L., Williams, D. J., and Mukamel, S., J. Phys. Chem., 96, p. 2801 (1992).Google Scholar
9. Shen, Y. R., Nature, 337, p. 519 (1989).Google Scholar
10. Katz, H. E., Scheller, G., Putvinski, T. M., Schilling, M. L., Wilson, W. L., and Chidsey, C. E. D., Science, 254, p. 1485 (1991).Google Scholar
11. Li, D., Swanson, B. I., Robinson, J. M., and Hoffbauer, M. T., J. Am. Chem. Soc., 115, p. 6975 (1993).Google Scholar
12. Marowsky, G., Lüpke, G., Steinhoff, R., Chi, L. F., and Möbius, D., Phys. Rev. B., 41, 4480 (1990).Google Scholar
13. Zhang, T. G., Zhang, C. H., and Wong, G. K., J. Opt. Soc. Am. B, 6, p. 902 (1990).Google Scholar
14. Girling, I. R., Cade, N. A., Kolinsky, P. V., Jones, R. J., Peterson, I. R., Ahmad, M. M., Neal, D. B., Petty, M. C., Roberts, G. G., and Feast, W. F., J. Opt. Soc. Am. B, 4, p. 6 (1987).Google Scholar