Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T10:31:34.511Z Has data issue: false hasContentIssue false

Processing Challenges for GaN-Based Photonic and Electronic Devices

Published online by Cambridge University Press:  10 February 2011

S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, 32611
F. Ren
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
A. Katz
Affiliation:
EPRI, Palo Alto, CA 94304
Get access

Abstract

The wide gap materials SiC, GaN and to a lesser extent diamond are attracting great interest for high power/high temperature electronics. There are a host of device processing challenges presented by these materials because of their physical and chemical stability, including difficulty in achieving stable, low contact resistances, especially for one conductivity type, absence of convenient wet etch recipes, generally slow dry etch rates, the high temperatures needed for implant activation, control of suitable gate dielectrics and the lack of cheap, large diameter conducting and semi-insulating substrates. The relatively deep ionization levels of some of the common dopants (Mg in GaN; B, Al in SiC; P in diamond) means that carrier densities may be low at room temperature even if the impurity is electrically active - this problem will be reduced at elevated temperature, and thus contact resistances will be greatly improved provided the metallization is stable and reliable. Some recent work with CoSix on SiC and W-alloys on GaN show promise for improved ohmic contacts. The issue of unintentional hydrogen passivation of dopants will also be covered - this leads to strong increases in resistivity of p-SiC and GaN, but to large decreases in resistivity of diamond. Recent work on development of wet etches has found recipes for AlN (KOH), while photochemical etching of SiC and GaN has been reported. In the latter cases p-type materials is not etched, which can be a major liability in some devices. The dry etch results obtained with various novel reactors, including ICP, ECR and LE4 will be compared - the high ion densities in the former techniques produce the highest etch rates for strongly-bonded materials, but can lead to preferential loss of N from the nitrides and therefore to a highly conducting surface. This is potentially a major problem for fabrication of dry etched, recessed gate FET structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rea, L.S., Mat. Res. Soc. Vol. 423, 3 (1996).Google Scholar
2. Reihardt, K., Scofield, J.D., and Mitchel, W.C., Proc. Workshop on High Temperature Electronics for Vehicles, eds. Khalil, G., Singh, H., and Podlesák, T., ARL Tech. Rep., pp. 7379, April 1995.Google Scholar
3. Brown, D.M., Downey, E., Ghezzo, M., Krechmer, J., Krishanmurty, V., Hennessy, W., and Michon, G., Sol. State Electronics, 39, 1543 (1996).Google Scholar
4. Palmour, J., King, J.S., Waltz, D., Edmond, J., and Carter, C., Trans. 1st Intl. High Temperature Conference, Albuquerque, NM, pp. 207212 (1991).Google Scholar
5. Agarwal, A.K., Seirgeij, R.R., Seshadri, S., White, M.H., McMullin, P.D., Burk, A.A., Roland, L.B., Brandt, C.D., and Hopkins, R.H., Mat. Res. Soc. Symp. 423, 87 (1996).Google Scholar
6. Bhatnagar, M. and Baliga, B.J., IEEE Trans. Electron. Dev. 40, 645 (1993).Google Scholar
7. Casady, J.B. and Johnson, R.W., Sol. State Electronics 39, 1409 (1996).Google Scholar
8. See for example GaN and related materials ed. Ponce, F., Dupuis, R.D., Edmond, J.A., and Nakamura, S, MRS Vol. 395 (1996) and references therein.Google Scholar
9. Han, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J., and Stall, R.A., Appl. Phys. Lett. 69, 2364 (1996).Google Scholar
10. Zolper, J.C., Reiger, D.J., Baca, A.G., Pearton, S.J., Lee, J.W., and Stall, R.A., Appl. Phys. Lett. 69, 538 (1996).Google Scholar
11. Porter, L.M., Davis, R.F., Bow, J.A., Kim, M.J., and Carpenter, R.W., J. Mater. Res. 10, 26 (1995).Google Scholar
12. Crofton, J., Barnes, P.A., Williams, J.R., and Edmond, J.A., Appl. Phys. Lett. 62, 384 (1993).Google Scholar
13. Lundberg, N. and Ostling, M., Solid-State Electronics 39, 1559 (1996).Google Scholar
14. Lundberg, N., Ph.D. Thesis, Royal Inst. Technology, Sweden (1996).Google Scholar
15. Ren, F., in GaN and Related materials, ed. Pearton, S.J. (Gabon and Breach, NY, 1997).Google Scholar
16. Ren, F., Abernathy, C.R., Pearton, S.J., and Wisk, P.W., Appl. Phys. Lett. 64, 1508 (1994).Google Scholar
17. Ren, F., Abernathy, C.R., Chu, S.N.G., Lothian, J.R., and Pearton, S.J., Appl. Phys. Lett. 66, 1503 (1995).Google Scholar
Ren, F., Pearton, S.J., Lothian, J.R., Chu, S.N.G., Chu, W.K., Wilson, R.G., Abernathy, C.R., and Peri, S.S., Appl. Phys. Lett. 65, 2165 (1994).Google Scholar
18. Lin, M.E., Ma, Z., Huang, F.Y., Fan, Z.F., Allen, L.H., and Morkoc, H., Appl. Phys. Lett. 64, 1003 (1994).Google Scholar
19. Lin, M.E., Huang, F.Y., and Morkoc, H., Appl. Phys. Lett. 64, 2557 (1994).Google Scholar
20. Durbha, A., Pearton, S.J., Abernathy, C.R., Lee, J.W., Holloway, P.H., and Ren, F., J. Vac. Sci. Technol. B14, 2582 (1996).Google Scholar
21. Cole, M.W., Eckart, D.W., Han, W.Y., Pfeffer, R.L., Monahan, T., Ren, F., Yuan, C., Stall, R.A., Pearton, S.J., Li, Y., and Lu, Y., J. Appl. Phys. 80, 278 (1996).Google Scholar
22. Abernathy, C.R., MacKenzie, J.D., Bharatan, S.R., Jones, K.S., and Pearton, S.J., Appl. Phys. Lett. 66, 1632(1995).Google Scholar
23. Ren, F., Pearton, S.J., Donovan, S., Abernathy, C.R., and Cole, M.W., ECS Proc. Vol. 96–11, 122(1996).Google Scholar
24. Vartuli, C.B., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Shul, R.J., Zolper, J.C., Lovejoy, M.L., Baca, A.G., and Hagerott-Crawford, M., Mat. Res. Soc. Symp. Vol. 421, 373 (1996); J. Vac. Sci. Technol. B14, 3520 (1996).Google Scholar
25. Donovan, S.M., MacKenzie, J.D., Abernathy, C.R., Vartuli, C.B., Pearton, S.J., Ren, F., Cole, M.W., and Jones, K., Mat. Res. Soc. Symp. Proc. 449, 771 (1997).Google Scholar
26. Lester, L.F., Brown, J.M., Ramer, J.C., Zhang, L., Hersee, S.D., and Zolper, J.C., Appl. Phys. Lett. 69, 2737(1996).Google Scholar
27. Fan, Z., Mohammad, S.N., Kim, W., Aktas, O., Botcharev, A.E., and Morkoc, H., Appl. Phys. Lett. 68, 1672 (1996).Google Scholar
28. Luther, B.P., Mohney, S.E., Jackson, T.N., Khan, M.A., Chen, Q., and Wang, J.W., Appl. Phys. Lett. 70, 57 (1997).Google Scholar
29. Ingerly, D.B., Chang, Y.A., Perkins, N.R., and Kuech, T.F., Appl. Phys. Lett. 70, 108 (1997).Google Scholar
30. Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 62, 2390 (1993).Google Scholar
31. Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 30, L1708 (1991).Google Scholar
32. Binari, S.C., Rowland, L.B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D.K., Electron Lett. 30, 1248 (1994).Google Scholar
33. Khan, M.A., Shur, M.S., and Chen, Q., Electron Lett., 31, 2130 (1995).Google Scholar
34. Khan, M.A., Kuznia, J.N., Bhattarai, A.R., and Olson, D.T., Appl. Phys. Lett. 62, 1248 (1993).Google Scholar
35. Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett., 62, 2390 (1993).Google Scholar
36. Akasaki, I., Amano, H., Kito, M., and Kiramatsu, K., J. Lumin. 48/49, 666 (1991).Google Scholar
37. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Appl. Phys. Lett. 67, 1868 (1995).Google Scholar
38. Zolper, J.C., Baca, A.G., Shul, R.J., Wilson, R.G., Pearton, S.J., and Stall, R.A., Appl. Phys. Lett., 68, 1266 (1996).Google Scholar
39. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L749 (1996).Google Scholar
40. Adesida, I., Mahajan, A., Andideh, E., Asif Khan, M., Olsen, D.T., and Kuznia, J.N., Appl. Phys. Lett. 63, 2777 (1993).Google Scholar
41. Lin, M.E., Zan, Z.F., Ma, Z., Allen, L.H., and Morkoc, H., Appl. Phys. Lett., 64, 887 (1994).Google Scholar
42. Ping, A.T., Adesida, I., Asif-Khan, M., and Kuznia, J.N., Electron. Lett. 30, 1895 (1994).Google Scholar
43. Lee, H., Oberman, D.B., and Harris, J.S. Jr, Appl. Phys. Lett. 67, 1754 (1995).Google Scholar
44. Pearton, S.J., Abernathy, C.R., Ren, F., Lothian, J.R., Wisk, P.W., Katz, A., and Constantine, C., Semicond. Sci Technol. 8, 310 (1993).Google Scholar
45. Pearton, S.J., Abernathy, C.R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).Google Scholar
46. Zhang, L., Ramer, J., Zheng, K., Lester, L.F., and Hersee, S.D., Paper presented at MRS Fall Meeting, Boston, MA (1995).Google Scholar
47. Shul, R.J., Kilcoyne, S.P., Hagerott-Crawford, M., Parameter, J.E., Vartuli, C.B., Abernathy, C.R., and Pearton, S.J., Appl. Phys. Lett. 66, 1761 (1995).Google Scholar
48. Shul, R.J., Pearton, S.J., and Abernathy, C.R., Abstract 311, p. 412, The Electrochemical Society Meeting Abstracts, Vol. 96–1, Los Angeles, CA, May 5–10, 1996.Google Scholar
49. Vartuli, C.B., Pearton, S.J., Lee, J.W., Hong, J., MacKenzie, J.D., Abernathy, C.R., and Shul, R.J., Appl. Phys. Lett. 69, 1426 (1996).Google Scholar
50. Taylor, K.M. and Lenie, C., J. Electrochem. Soc. 107, 308 (1960).Google Scholar
51. Long, G. and Foster, L.M., J. Am Ceram. Soc. 42, 53 (1959).Google Scholar
52. Barrett, N.J., Grange, J.D., Sealy, B.J., and Stephen, K.G., J. Appl. Phys. 57, 5470 (1985).Google Scholar
53. Aita, C.R. and Gawlak, C.J., J. Vac. Sci. Technol. A1, 403 (1983).Google Scholar
54. Kline, G.R. and Lakin, K.M., Appl. Phys. Lett. 43, 750 (1983).Google Scholar
55. Pauleau, T., J. Electrochem. Soc. 129, 1045 (1982).Google Scholar
56. Sheng, T.Y., Yu, Z.Q., and Collins, G.J., Appl. Phys. Lett. 52, 576 (1988).Google Scholar
57. Mileham, J.R., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Shul, R.J., and Kilcoyne, S.P., Appl. Phys. Lett., 67, 1119 (1995).Google Scholar
58. Guo, Q.X., Kato, O., and Yoshida, Y., This Journal, 139, 2008 (1992).Google Scholar
59. Vartuli, C.B., Pearton, S.J., Lee, J.W., Abemathy, C.R., MacKenzie, J.D., Zolper, J.C., Shul, R.J., and Ren, F., J. Electrochem. Soc. 143, 3681 (1996).Google Scholar
60. Minsky, M.S., White, M., and Hu, E.L., Appl. Phys. Lett. 68, 1531 (1996).Google Scholar
61. Shor, J.S. and Osgood, R.M., J. Electrochem. Soc. 140, L123 (1993).Google Scholar
62. Youtsey, C., Adesida, I., and Bulman, G., Electronics Lett, (in press).Google Scholar
63. Gillis, H.P., Choutov, D.A., and Martin, K.P., J. Mater., August 1996, pp. 5055.Google Scholar
64. McLane, G.F., Pearton, S.J., and Abernathy, C.R., Wide Bandgap Semiconductors and Devices, Vol. 95–21 (ECS, Pennington, NJ), pp. 204214.Google Scholar
65. Shul, R.J., McClellan, G.B., Casalnuovo, S.A., Rieger, D.J., Pearton, S.J., Constantine, C., Barrati, C., and Karlicek, R.K., Appl. Phys. Lett. 69, 1119 (1996).Google Scholar
66. Pearton, S.J., Lee, J.W., MacKenzie, J.D., Abernathy, C.R., and Shul, R.J., Appl. Phys. Lett. 67, 2329(1995).Google Scholar
67. Ren, F., Lothian, J.R., Chen, Y.K., MacKenzie, J.D., Donovan, S.M., Vartuli, C.B., Abernathy, C.R., Lee, J.W., and Pearton, S.J., J. Electrochem. Soc. 143, L217 (1996).Google Scholar
68. Shul, R.J., Zolper, J.C., Crawford, M.H., Hickman, R.T., Briggs, R.D., Pearton, S.J., Lee, J.W., Karlicek, R., Tran, C., Constantine, C., and Barrati, C., ECS Prod. Vol. 96–15, 232 (1996).Google Scholar
69. Gillis, H.P., Choutov, D.A., Martin, K.P., Pearton, S.J., and Abernathy, C.R., J. Electrochem. Soc. 143, L251 (1996).Google Scholar
70. Leonard, R.T. and Bedair, S.M., Appl. Phys. Lett. 68, 794 (1996).Google Scholar
71. Flemish, J.R., Xie, K., and McLane, G.F., Mat. Res. Soc. Symp. Proc. 428, 106 (1996).Google Scholar
72. Stecki, A.J. and Yih, P.H., Appl. Phys. Lett. 60, 1966 (1992).Google Scholar
73. Palmour, J.W., Davis, R.F., Wallett, T.M., and Bhashin, K.B., J. Vac. Sci. Technol. A. 4, 590(1986).Google Scholar
74. Casady, J.B., Luckowski, E.D., Bozack, M., Steridan, D., Johnson, R.W., and Williams, J.R., Tech. Dig. Of Int. Conf. SiC Related materials, Kyoto, Japan 1995, pp. 382383.Google Scholar
75. Yih, P.H. and Stecki, A.J., J. Electrochem. Soc. 140, 1813 (1993).Google Scholar
76. Flemish, J.R., Proc. Widebandgap Semiconductors and Devices, ed. Ren, F. (Electrochemical Society, Pennington, NJ 1995) Vol. 10, pp. 231235.Google Scholar
77. Flemish, J.R., Xie, K., and Zhao, J.H., Appl. Phys. Lett. 64, 2315 (1994).Google Scholar
78. Flemish, J.R., Xie, K., Buchwald, W., Casas, L., Zhao, J.H., McLane, G.F., and Dubey, M., Mat. Res. Soc. Symp. Proc. 339, 145 (1994).Google Scholar
79. Casady, J.B. and Johnson, R.W., Solid State Electron. 39, 1409 (1996);Google Scholar
Casady, J.B., Luckowski, E.D., Bozack, M., Sheridan, D., Johnson, R.W., and Williams, J.A., J. Electrochem. Soc. 143, 750(1996).Google Scholar
80. Pearton, S.J., Lee, J.W., Grown, J.M., Bhaskaran, M., and Ren, F., Appl. Phys. Lett. 68, 2987 (1996).Google Scholar
81. Vartuli, C.B., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Lambers, E.S., and Zolper, J.C., J. Vac. Sci. Technol. B14, 3523 (1996).Google Scholar
82. Ambacher, O., Brandt, M.S., Dimitrov, R., Metzger, T., Stutzmann, M., Fischer, R.A., Miehr, A., Bergmaier, A., and Dollinger, G., J. Vac. Sci. Technol. B14, 3532 (1996).Google Scholar
83. Edgar, J.H., Properties of Group III Nitrides (INSPEC IEEE London 1994).Google Scholar
84. Pánkové, J.I. and Hutchby, J.A., J. Appl. Phys. 47, 5387 (1976).Google Scholar
85. Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jap. J. Appl. Phys. 28, L2118 (1989).Google Scholar
86. Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jap. J. Appl. Phys. 31, L139 (1992).Google Scholar
87. Lee, J.W., Pearton, S.J., Zolper, J.C., and Stall, R.A., Appl. Phys. Lett. 68, 2102 (1996).Google Scholar
88. Wilson, R.G., Vartuli, C.B., Abemathy, C.R., Pearton, S.J., and Zavadá, J.M., Solid-State Elec. 38, 1329 (1995).Google Scholar
89. Zolper, J.C., Hagerott-Crawford, M., Pearton, S.J., Abemathy, C.R., Vartuli, C.B., Ramer, J., Hersee, S.D., Yuan, C., and Stall, R.A., Mat. Res. Soc. Symp. Proc. Vol. 394, 801 (1996).Google Scholar
90. Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Zolper, J.C., Yuan, C., and Stall, R.A., Appl. Phys Lett. 67, 1435(1995).Google Scholar
91. Maruska, H.P. and Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
92. Lester, L.F., Brown, J.M., Ramer, J.C., Zhang, L., Hersee, S.D., and Zolper, J.C., Appl. Phys. Lett. 69, 2737(1996).Google Scholar
93. Zolper, J.C., Rieger, D.J., Baca, A.G., Pearton, S.J., Lee, J.W., and Stall, R.A., Appl. Phys. Lett. 69, 538 (1996).Google Scholar
94. Strite, S., Jpn. J. Appl. Phys. 33, L699 (1994).Google Scholar
95. Zolper, J.C., Wilson, R.G., Pearton, S.J., and Stali, R.A., Appl. Phys. Lett. 68, 1945 (1996).Google Scholar
96. Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J., and Stali, R.A., Appl. Phys. Lett. 69, 2364 (1996).Google Scholar
97. Zolper, J.C., Crawford, M.H., Williams, J.S., Tan, H.H., and Stall, R.A., Conf. Proc. Of Ion Beam Modification of Materials, 16, 1996, Albuquerque, NM (in press).Google Scholar
98. Binari, S.C., Dietrich, H.B., Kelner, G., Rowland, L.B., Doverspike, K., Wickenden, D.K., J. Appl. Phys. 78, 3008 (1995).Google Scholar
99. Pearton, S.J., Abemathy, C.R., Wisk, P.W., Hobson, W.S., and Ren, F., Appl. Phys. Lett. 63, 1143(1993).Google Scholar
100. Zolper, J.C., Pearton, S.J., Abemathy, C.R., Vartuli, C.B., Appl. Phys. Lett. 66, 3042 (1995).Google Scholar
101. Zolper, J.C., Hagerott-Crawford, M., Pearton, S.J., Abemathy, C.R., Vartuli, C.B., Yuan, C., and Stali, R.A., J. Electron. Mat. 25, 839 (1996).Google Scholar