Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:03:12.420Z Has data issue: false hasContentIssue false

Quantum coherence in sub-10 nm metal wires

Published online by Cambridge University Press:  17 March 2011

Douglas Natelson
Affiliation:
Department of Physics and Astronomy, MS61, Rice University, Houston, TX 77005
Robert L. Willett
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Kenneth W. West
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Loren N. Pfeiffer
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

We report weak localization studies of quantum coherence in metal nanowires with widths as small as 5 nm, demonstrating that structures fabricated at sub-50 nm length scales can reveal coherence phenomena not accessible in larger devices. Through selective etching of cleaved molecular-beam epitaxy (MBE)-grown substrates, we produce precise nanoscale surface relief then used as a stencil for metal deposition. This nonlithographic method of lateral definition allows the fabrication of metal (AuPd) nanowires greater than one micron in length with widths below 5 nm, a previously unexplored size regime in studies of quantum corrections to the conductance of disordered metals. Analyzing magnetoresistance data, we find that the coherence time, Tφ, shows a low temperature T dependence close to quasi-1D theoretical expectations (Tφ ∼ T-2/3 in 5 nm wide wires, while exhibiting a relative saturation as T 0 for wide samples of the same material. Since an externally controlled parameter, the sample geometry, can cause a single material to exhibit both suppression and divergence ofTφ, this finding provides a new constraint on models of dephasing phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dolan, G.J., Osheroff, D.D.. Phys. Rev. Lett. 43, 721 (1979).Google Scholar
2. Skocpol, W.J., Mankiewich, P.M., Howard, R.E., Jackel, L.D., Tennant, D.M.. Phys. Rev. Lett. 56, 2865 (1986).Google Scholar
3. Feng, S.. Mesoscopic Phenomena in Solids, ed. Altshuler, B.L., Lee, P.A., Webb, R.A. (Elsevier, 1991) 107; N. Giordano. Phys. Rev. Lett., 131.Google Scholar
4. Imry, Y., Introduction to Mesoscopic Physics, (Oxford University Press, 1997).Google Scholar
5. Altshuler, B.L., Aronov, A.G., Khmelnitskii, D.E., J. Phys. C 15, 7367 (1982).Google Scholar
6. Lee, P. and Ramakrishnan, T.V., Rev. Mod. Phys. 57, 287 (1985).Google Scholar
7. Mohanty, P., Jariwala, E.M.Q., and Webb, R.A., Phys. Rev. Lett. 78, 3366 (1997).Google Scholar
8. Webb, R.A., Mohanty, P., and Jariwala, E.M.Q., Fortschr. Phys. 46, 779 (1998).Google Scholar
9. Mohanty, P. and Webb, R.A., Phys. Rev. B 55, 13452 (1997).Google Scholar
10. Altshuler, B.L., Gershenson, M.E., and Aleiner, I.L., Physica E 3, 58 (1998); I.L. Aleiner, B.L. Altshuler, and M.E. Gershenson, Wave Rand. Med. 9, 201 (1999).Google Scholar
11. Imry, Y., Yukuyama, H., Schwab, P., Europhys. Lett. 47, 608 (1999)Google Scholar
12. Zawadowski, A., Delft, J. von, and Ralph, D., Phys. Rev. Lett. 83, 2632 (1999)Google Scholar
13. Zaikin, A.D. and Golubev, D.S., Physica B 280, 453 (2000) and references.Google Scholar
14. Houshangpour, K. and Maschke, K., Phys. Rev. B 59, 4615 (1999); R. Krishnan and V. Srivastava, Phys. Rev. B 59, R12747 (2000); X.R. Wang, G. Xiong, and S.D. Wang, Phys. Rev. B 61, R5090 (2000).Google Scholar
15. Khavin, Yu. B., Gershenson, M.E., Bogdanov, A.L., Phys. Rev. Lett. 81, 1066 (1998).Google Scholar
16. Mohanty, P.. Ann. der Physik 8, 549 (1999).Google Scholar
17. Gougam, A.B., Pierre, F., Pothier, H., Esteve, D., and Birge, N.O., J. Low Temp. Phys. 118, 447 (2000).Google Scholar
18. Pivin, D.P. Jr., Anderson, A., Bird, J.P., Ferry, D.K.. Phys. Rev. Lett. 82, 4087 (1999).Google Scholar
19. Huibers, A.G., Folk, J.A., Patel, S.R., Marcus, C.M., Duruöz, C.I., Harris, J.S. Jr., Phys. Rev. Lett. 83, 5090 (1999).Google Scholar
20. Lin, J.J., Kao, L.Y.. cond-mat/0007417.Google Scholar
21. Giordano, N.. Phys. Rev. B 22, 5635 (1980).Google Scholar
22. Lin, J.J. and Giordano, N.. Phys. Rev. B 35, 1071 (1987) and references.Google Scholar
23. Natelson, D., Willett, R.L., West, K.W., Pfeiffer, L.N.. Sol. State Comm. 115, 269 (2000).Google Scholar
24. Natelson, D., Willett, R.L., West, K.W., Pfeiffer, L.N.. App. Phys. Lett. 77, 1991 (2000).Google Scholar
25. Durkan, C., Schneider, M.A., Wellend, M.E.. J. Appl. Phys. 86, 1280 (1999).Google Scholar
26. Altshuler, B.L., Aronov, A.G., Lee, P.A., Phys. Rev. Lett. 44, 1288 (1980); B.L. Altshuler, D. Khmelnitskii, A.I. Larkin, P.A. Lee, Phys. Rev. B 22, 5142.Google Scholar
27. Hikami, S., Larkin, A.I., Nagoaka, Y.. Prog. Theor. Phys.. 63, 707 (1980).Google Scholar
28. Gershenson, M.E.. Ann. der Physik 8, 559 (1999).Google Scholar
29. Ashcroft, N.W., Mermin, N.D.. Solid State Physics (Holt, Rinehart, and Winston, New York, 1976).Google Scholar
30. Echternach, P.M., Gershenson, M.E., Bozler, H.M., Bogdanov, A.L., Nilsson, B.. Phys. Rev. B 48, 11516 (1993).Google Scholar
31. Bergmann, G. and Beckmann, H.. Phys. Rev. B 52, 15687 and references.Google Scholar
32. Pierre, F., Pothier, H., Esteve, D., Devoret, M.H., Gougam, A.B., Birge, N.O.. cond- mat/0012038.Google Scholar