Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T15:51:22.170Z Has data issue: false hasContentIssue false

Quinone-Decorated Carbon Materials for Capacitive Energy Storage Applications

Published online by Cambridge University Press:  16 December 2014

Mikolaj Meller
Affiliation:
Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poznan, Poland
Krzysztof Fic
Affiliation:
Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poznan, Poland
Elzbieta Frackowiak
Affiliation:
Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Poznan, Poland
Get access

Abstract

Quinone/hydroquinone redox couple has been utilized as a source of additional capacitance in typical capacitive energy-storage materials. By generation of functional groups on the carbon electrode surface (grafting) directly from electrolyte there is a possibility to enhance the capacitance value significantly. Hydroxybenzene solutions with different substitution of hydroxyl groups were effectively used for this target. Electrochemical and physicochemical properties of activated carbons have been investigated before and after grafting process.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Roldán, S., Granda, M., Menéndez, R., Santamaría, R. and Blanco, C., J. Phys. Chem. C 115, 1760617611 (2011).10.1021/jp205100vCrossRefGoogle Scholar
Roldán, S., González, Z., Blanco, C., Granda, M., Menéndez, R. and Santamaría, R., Electrochim. Acta 56, 34013405 (2011).10.1016/j.electacta.2010.10.017CrossRefGoogle Scholar
Broughton, J. and Brett, M., Electrochim. Acta 49, 44394446 (2004).10.1016/j.electacta.2004.04.035CrossRefGoogle Scholar
Staiti, P. and Lufrano, F., Electrochim. Acta, 55, 74367442 (2010).10.1016/j.electacta.2010.01.021CrossRefGoogle Scholar
Peng, C., Jin, J. and Chen, G. Z., Electrochim. Acta 53, 525537 (2007).10.1016/j.electacta.2007.07.004CrossRefGoogle Scholar
Lota, G., Fic, K. and Frackowiak, E., Electrochem. Commun. 13, 3841 (2011).10.1016/j.elecom.2010.11.007CrossRefGoogle Scholar
Menzel, J., Fic, K., Meller, M. and Frackowiak, E., J. Appl. Electrochem. 44, 439445 (2014).10.1007/s10800-013-0657-8CrossRefGoogle Scholar
Frackowiak, E., Fic, K., Meller, M. and Lota, G., ChemSusChem 5, 11811185 (2012).10.1002/cssc.201200227CrossRefGoogle Scholar
Meller, M., Menzel, J., Fic, K., Gastoł, D., Frackowiak, E., Solid State Ionics 265, 6167 (2014).10.1016/j.ssi.2014.07.014CrossRefGoogle Scholar