Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T10:44:08.469Z Has data issue: false hasContentIssue false

Radial distribution functions of amorphous silicon carbide

Published online by Cambridge University Press:  11 February 2011

Manabu Ishimaru
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567–0047, Japan
In-Tae Bae
Affiliation:
Department of Materials Science and Engineering, Osaka University, Yamadaoka, Suita, Osaka 565–0871, Japan
Yoshihiko Hirotsu
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka 567–0047, Japan
Get access

Abstract

Atomistic structures of amorphous silicon carbide generated by energetic particles were examined by electron diffraction techniques in combination with imaging plates. Atomic pair distribution functions revealed that not only heteronuclear (silicon-carbon) bonds but also homonuclear (silicon-silicon and carbon-carbon) bonds exist in the first coordination shell of amorphous silicon carbide induced by ion- or electron-beam-irradiation. Structural changes from amorphous silicon carbide to amorphous silicon were observed under the electron irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sproul, A., McKenzie, D. R., and Cockayne, D. J. H., Philos. Mag. B 54, 113 (1986).Google Scholar
2. Kaloyeros, A. E., Rizk, R. B., and Woodhouse, J. B., Phys. Rev. B 38, 13099 (1988).Google Scholar
3. Meneghini, C., Pascarelli, S., Boscherini, F., Mobilio, S., and Evangelisti, F., J. Non-Cryst. Solids 137/138, 75 (1991).Google Scholar
4. Takeshita, T., Kurata, Y., and Hasegawa, S., J. Appl. Phys. 71, 5395 (1992).Google Scholar
5. Kaloyeros, A. E., Rizk, R. B., and Woodhouse, J. B., Phys. Rev. B 38, 13099 (1988).Google Scholar
6. Bentley, J., Angelini, P., Gove, A. P., Sklad, P. S., and Fisher, A. T., Inst. Phys. Conf. Ser. 98, 107 (1989).Google Scholar
7. Gorman, M. and Solin, S. A., Solid State Commun. 15, 761 (1974).Google Scholar
8. Fang, L. C. and Ley, L., Phys. Rev. B 40, 3818 (1989).Google Scholar
9. Finocchi, F., Galli, G., Parrinello, M., and Bertoni, C. M., Phys. Rev. Lett. 68, 3044 (1992).Google Scholar
10. Mura, D., Colombo, L., Bertoncini, R., and Mula, G., Phys. Rev. B 58, 10357 (1998).Google Scholar
11. Gao, F. and Weber, W. J., J. Appl. Phys. 89, 4275 (2001).Google Scholar
12. Bolse, W., Nucl. Instrum. Meth. B 148, 83 (1999).Google Scholar
13. Mori, N., Oikawa, T., Katoh, T., Miyahara, J., and Harada, Y., Ultramicroscopy 25, 195 (1988).Google Scholar
14. Ohkubo, T., Hiroshima, T., Hirotsu, Y., Inoue, A., and Oikawa, T., Mater. Trans. JIM 41, 1385 (2000).Google Scholar
15. Hirotsu, Y., Ishimaru, M., Ohkubo, T., Hanada, T., and Sugiyama, M., J. Electron Microsc. 50, 435 (2001).Google Scholar
16. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
17. Devanathan, R. and Weber, W. J., Nucl. Instrum. Meth. B 278, 258 (2000).Google Scholar