Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-23T10:25:54.779Z Has data issue: false hasContentIssue false

Radial-breathing Mode Frequencies for Single-Walled Carbon Nanotubes of Arbitrary Chirality: First-Principles Calculations

Published online by Cambridge University Press:  26 February 2011

Hadley Mark Lawler
Affiliation:
lawler@alchemy.nrl.navy.mil, Naval Research Laboratory, Chemistry Division, 4555 Overlook Ave. Sw, Washington, D.C., 20375, United States, 202-767-2160
D. Areshkin
Affiliation:
denis.areshkin@nrl.navy.mil
J.W. Mintmire
Affiliation:
john.mintmire@okstate.edu
C.T. White
Affiliation:
carter.white@nrl.navy.mil
Get access

Abstract

First-principles calculations are performed for the radial-breathing mode of all 105 single-walled carbon nanotubes within the rolling-geometry diameter range of 0.4 to 1.4 nm. The diameter dependence of the frequencies is analyzed in some detail, and compared with measurable parameters of bulk graphite. The frequencies are compared with those available from other first-principles work, and experimental studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jishi, R.A., Venkataraman, L., Dresselhaus, M.S., and Dresselhaus, G., Chem. Phys. Lett. 209, 77 (1993).Google Scholar
2. Strano, M.S., Doorn, S.K., Haroz, E.H., Kittrell, C., Hauge, R.H., and Smalley, R.E., Nano Lett. 3, 1091 (2003); S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman, Science 298, 2361 (2002).Google Scholar
3. Jorio, A., Fantini, C., Pimenta, M.A., Capaz, R.B., Samsonidze, G..G., Dresselhaus, G., Dresselhaus, M.S., Jiang, J., Kobayashi, N., Gruneis, A., and Saito, R., Phys. Rev. B 71, 075401 (2005).Google Scholar
4. White, C.T., Robertson, D.H., and Mintmire, J.W., Phys. Rev. B 47, R5485 (1993).Google Scholar
5. Mintmire, J.W., in Density Functional Methods in Chemistry, edited by Labanowski, J.K., and Andzelm, J.W. (Springer-Verlag, New York, 1991), pp 125137.Google Scholar
5. Robertson, D.H., Brenner, D.W., Mintmire, J.W., Phys. Rev. B 45, R12592 (1992).Google Scholar
7. Cabria, I., Mintmire, J.W., and White, C.T., Phys. Rev. B 67, 121406(R) (2003).Google Scholar
8. Blakslee, O.L., Proctor, D.G., Seldin, E.J., Spence, G.B., and Weng, T., J. App. Phys. 41, 3373 (1970).Google Scholar
9. Mahan, G.D., Phys. Rev. B 65, 235402(R) (2002);Google Scholar
Venkateswaran, U.D., Masica, D.L., Sumanasekara, G.U., Furtado, C.A., Kim, U.J., and Eklund, P.C., Phys. Rev. B 68, 241406 (2003).Google Scholar
10. Filho, A.G.Souza, Chou, S.G., Samsonidze, G.G., Dresselhaus, G., Dresselhaus, M.S., , Lei An, Swan, Anna K., Ünlü, M.S., Goldberg, B.B., Jorio, A., Grüneis, A., and Saito, R., Phys. Rev. B 69, 115428 (2004).Google Scholar
11. Sánchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., and Ordejón, P., Phys. Rev. B 59, 12678 (1999).Google Scholar
12. Mintmire, J.W. and White, C.T., Phys. Rev. B 35, R4180 (1987).Google Scholar
13. Hulman, M., Kuzmany, H., Dubay, O., Kresse, G., Li, L., and Tang, Z.K., J. Chem. Phys. 119, 3384 (2003);Google Scholar
Li, I.L., Li, G.D., Liu, H.J., Chan, C.T., and Tang, Z.K., App. Phys Lett. 82, 1467 (2003);Google Scholar
Liu, H.J., and Chan, C.T., Phys. Rev. B 66, 115416 (2002);Google Scholar
Xiao, Y., Li, Z.M., Yan, X.H., Zhang, Y., Mao, Y.L., and Yang, Y.R., Phys. Rev. B 71, 233405 (2005).Google Scholar
14. Kürti, J., Kresse, G., and Kuzmany, H., Phys. Rev. B 58, R8869 (1998);Google Scholar
Kürti, J., Zólyomi, V., Kertesz, M., and Sun, G., New J. Phys. 5, 125 (2003).Google Scholar
15. Milošević, I., Dobardžić, E., Damnjanović, M., Phys. Rev. B 72, 085426 (2005).Google Scholar