Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-02T07:32:09.089Z Has data issue: false hasContentIssue false

Raman Scattering and Superconductivity of Alkali-Fullerene Materials

Published online by Cambridge University Press:  25 February 2011

J. S. Lannin
Affiliation:
Dept. of Physics, Penn State University, University Park, PA 16802
M. G. Mitch
Affiliation:
Dept. of Physics, Penn State University, University Park, PA 16802
W. Bacsa
Affiliation:
Dept. of Physics, Penn State University, University Park, PA 16802
S. J. Chase
Affiliation:
Dept. of Physics, Penn State University, University Park, PA 16802
Get access

Abstract

Raman scattering measurements in alkali—fullerene alloys in ultrathin and thin films provide evidence for variations in electron—phonon coupling. For x — 3similar behavior of Rb3 C60 films of different thickness support substantial electron—phonon induced damping of specific Hg(i) modes derived from intramolecular modes of C60. In 400A thick films a reduction of induced scattering from Raman inactive C60 modes substantiates the importance ofHg(2), but not Hg(3) modes for phonon—mediated superconductivity. In contrast to RbxC60 and KxC60 ultrathin film solid solutions, similar Raman spectra for NaxC60 indicate substantially reduced coupling consistent with the absence of superconductivity in this system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mitch, M. G., Chase, S. J. and Lannin, J. S., Phys. Rev. Lett. 68, 883 (1992).Google Scholar
[2] Johnson, K. A., McHenrym, W. Clougherty, D. P., Physica C, 183, 319 (1991).Google Scholar
[3] Varma, C. M., Zannen, J. and Raghavachari, K., Science 215, 989 (1991).CrossRefGoogle Scholar
[4] Schlüter, M. Lannoo, M., Needels, M. and Baraff, G. anmd Tomanek, D., Phys. Rev. Lett. 68, 526 (1992).Google Scholar
[5] Jishi, R. A. and Dresselhaus, M. S., Phys. Rev. B45, 2597 (1992).CrossRefGoogle Scholar
[6] Novikov, D. L., Gubanov, V. A. and Freeman, A. J., Physica C, 191, 339 (1992).Google Scholar
[7] Zhang, F. C., Ogata, M. and Rice, T. M., Phys. Rev. Lett. 67, 3452 (1991)CrossRefGoogle Scholar
[8] Zhao, G. L., Ho, K. M. and Harmon, B. N., Bull Aps 37, 612 (1992).Google Scholar
[9] Copley, J. (private communication).Google Scholar
[10] White, J. W. et al. , Chem. Phys. Lett. 191, 92 (1992).CrossRefGoogle Scholar
[11] Chakravarty, S. (private communication).Google Scholar
[12] Coulmbeau, C. et al. , Rend, C.. Acadm. Sci. Paris 313, Série II, 1387 (1991).Google Scholar
[13] Prassides, K. et al. , Nature 354, 462 (1991).CrossRefGoogle Scholar
[14] Mitch, M. C., Chase, S. J. and Lennin, J. S., Phys. Rev. B (in press).Google Scholar
[15] Rosseinsky, M.J. et al. , Nature 356, 416 (1992).Google Scholar
[16] Bethune, D. et al. , Chem. Phys. Lett. 179, 181 (1991).Google Scholar
[17] Duclos, S. et al. , Science 254, 1625 (1991).Google Scholar
[18] Zhou, P. et al. , Phys. Rev. B (in press).Google Scholar
[19] D. Murphy (private communication).Google Scholar