Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T15:49:52.888Z Has data issue: false hasContentIssue false

Rapid Thermal Oxidation for Passivation of Porous Silicon

Published online by Cambridge University Press:  22 February 2011

I. BÁrsony
Affiliation:
MESA Research Institute, University of Twente, P.O.Box 219, NL-7500 AE Enschede, The Netherlands Research Institute for Materials Science KFKJ-ATKI, P.O. Box 49, H-1525 Budapest, Hungary
J.G.E. Klappe
Affiliation:
MESA Research Institute, University of Twente, P.O.Box 219, NL-7500 AE Enschede, The Netherlands
É. Vázsonyi
Affiliation:
Research Institute for Materials Science KFKJ-ATKI, P.O. Box 49, H-1525 Budapest, Hungary
T. Lohner
Affiliation:
Research Institute for Materials Science KFKJ-ATKI, P.O. Box 49, H-1525 Budapest, Hungary
M. Fried
Affiliation:
Research Institute for Materials Science KFKJ-ATKI, P.O. Box 49, H-1525 Budapest, Hungary
Get access

Abstract

Chemical and mechanical stability of porous silicon layers (PSL) is the prerequisite of any active (luminescent) or passive (e.g. porous substrate) integrated applications. In this work X-ray diffraction (XRD) was used to analyze quantitatively the strain distribution obtained in different morphology PSL that were prepared on (100) p and p+Si substrates. Tetragonal lattice constant distortion can be as high as 1.4% in highly porous “as-prepared” samples. Incoherent optical heating RTO is governed by the absorption in the oxidized specimen. PSL show vertical inhomogeneity according to interpretation of spectroscopic ellipsometry (SE) data. Oxygen incorporation during RTO is controlled by specific surface (in p+ proportional, in p inversely proportional with porosity), while the developing compressive stress depends on pore size, and decreases with porosity in both morphologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[2] Lehman, V. and Gösele, V., Appl. Phys. Lett. 58, 856 (1991).CrossRefGoogle Scholar
[3] Tischler, M. A., Collins, R. T., Stathis, J. H. and Tsang, J. C. Appl. Phys. Lett. 60, 639 (1992).Google Scholar
[4] Robinson, M.B., Dillon, A.C., Haynes, D.R. and George, S.M., Appl. Phys. Lett. 61, 1414 (1992).Google Scholar
[5] Yamada, M. and Kondo, K., Jpn. J. Appl. Phys. 31, L993 (1992).CrossRefGoogle Scholar
[6] Jung, K. H., Shih, S. and Kwong, D. L. and J. Electrochem. Soc. 140, 3046 (1993).CrossRefGoogle Scholar
[7] , Petrova-Koch, Muschcik, T., Kux, A., Meyer, B. K., Koch, F., and Lehman, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
[8] Batstone, J.L., Tischler, M. A., Collins, R. T., Appl. Phys. Lett. 62, 2667 (1993).Google Scholar
[9] Vázsonyi, Éva B., Koòs, Margit, Jalsovszky, G. and Pócsik, I. J. Luminescence 57, 121 (1993).Google Scholar
[10] Bellet, D., Dolino, G., Ligeon, M., Blank, P., Kirsch, M., J. Appl. Phys. 71, 145 (1992).Google Scholar
[11] Shiba, Kazutoshi, Sakamoto, Kinihide, Miyazaki, Seiichi and Hirose, Masataka Jpn. J. Appl. Phys. 32,2722 (1993).Google Scholar
[12] Klappe, J. G. E., Fewster, P. F., J. Appl. Cryst. 27, 103 (1994).CrossRefGoogle Scholar
[13] Stoney, G. G., Proc. Royal Soc., London A82, 172 (1909).Google Scholar