Article contents
Rapid Thermal Oxidation for Passivation of Porous Silicon
Published online by Cambridge University Press: 22 February 2011
Abstract
Chemical and mechanical stability of porous silicon layers (PSL) is the prerequisite of any active (luminescent) or passive (e.g. porous substrate) integrated applications. In this work X-ray diffraction (XRD) was used to analyze quantitatively the strain distribution obtained in different morphology PSL that were prepared on (100) p and p+Si substrates. Tetragonal lattice constant distortion can be as high as 1.4% in highly porous “as-prepared” samples. Incoherent optical heating RTO is governed by the absorption in the oxidized specimen. PSL show vertical inhomogeneity according to interpretation of spectroscopic ellipsometry (SE) data. Oxygen incorporation during RTO is controlled by specific surface (in p+ proportional, in p inversely proportional with porosity), while the developing compressive stress depends on pore size, and decreases with porosity in both morphologies.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
REFERENCES
- 7
- Cited by