Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:21:01.521Z Has data issue: false hasContentIssue false

Rapid Thermal Processing of Implanted GaN Up to 1500°C

Published online by Cambridge University Press:  15 February 2011

X. A. Cao
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
D. J. Rieger
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
J. C. Zolper
Affiliation:
Office of Naval Research, Arlington, VA 22217, USA
R. G. Wilson
Affiliation:
Consultant, Stevenson Ranch, CA 91381, USA
M. Fu
Affiliation:
Consultant, Stevenson Ranch, CA 91381, USA
J. A. Sekhar
Affiliation:
Micropyretics Heaters International, Inc. Cincinnati, OH 45215, USA
H. J. Guo
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831, USA
S. J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831, USA
Get access

Abstract

GaN implanted with donor(Si, S, Se, Te) or acceptor (Be, Mg, C) species was annealed at 900-1500°C using AIN encapsulation. No redistribution was measured by SIMS for any of the dopants and effective diffusion coefficients are ≤2×10-13 cm2 s-1 at 1400°C, except Be, which displays damage-enhanced diffusion at 900°C and is immobile once the point defect concentration is removed. Activation efficiency of ∼90% is obtained for Si at 1400°C. TEM of the implanted material shows a strong reduction in lattice disorder at 1400-1500°C compared to previous results at 1100°C. There is minimal interaction of the sputtered AIN with GaN under our conditions, and it is readily removed selectively with KOH.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zolper, J. C., J. Cryst. Growth 178 175 (1997).Google Scholar
2. Zolper, J. C., in GaN and Related Materials, Vol. 2 of Optoelectronic Properties of Semiconductors and Superlattices. (Gordon and Breach, NY 1997).Google Scholar
3. Wilson, R. G., Proc. Electrochem. Soc. Vol. 95–21 152 (1995).Google Scholar
4. Maruska, H. P., Lioubtchenko, M., Tetreault, T. G., Osinski, M., Pearton, S. J., Schurman, M., Vaudo, R., Sakai, S., Chen, Q. and Shul, R. J., Mat. Res. Soc. Symp. Proc. 483 345 (1998).Google Scholar
5. Zolper, J. C., Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., Crawford, M. H. and Karlicek, R. F. Jr, Appl. Phys. Lett. 70 2729 (1997).Google Scholar
6. Binari, S. C., Dietrich, H. B., Kelner, G., Rowland, L. B., Doverspike, K. and Wickenden, D. K., J. Appl. Phys. 78 3008 (1995).Google Scholar
7. Liu, C., Mensching, B., Zeitler, M., Volz, K., and Rauschenbach, B., Phys. Rev. B 57 2530 (1998).Google Scholar
8. Ronning, C., Dalmer, N., Deicher, M., Restle, M., Bremser, M. D., Davis, R. F. and Hofsass, H., Mat. Res. Soc. Symp. Proc. Vol. 468 407 (1997).Google Scholar
9. Kobayashi, H., Gibson, W. M., Appl. Phys. Lett. 73 1406 (1998).Google Scholar
10. Suski, T., Jun, J., Leszczynski, M., Teisseyre, H., Grzegory, I., Porowski, S., Baranowski, J. M., Rockett, A., Strite, S., Stanert, A., Turos, A., Tan, H. H., Williams, J. S. and Jagadish, C., Mat. Res. Soc. Symp. Proc. Vol. 482 703 (1998).Google Scholar
11. Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Zolper, J. C., Yuan, C. and Stall, R. A., Appl. Phys. Lett. 68 2273 (1996).Google Scholar
12. Zolper, J. C., Shul, R. J., Baca, A. G., Wilson, R. G., Pearton, S. J. and Stall, R. A., Appl. Phys. Lett. 68 2273 (1996).Google Scholar
13. Zolper, J. C., Wilson, R. G., Pearton, S. J. and Stall, R. A., Appl. Phys. Lett. 68 1945 (1996).Google Scholar
14. Zolper, J. C., Han, J., Deusen, S. B. Van, Biefeld, R. M., Crawford, M. H., Han, J., Suski, T. Baranowski, J. M. and Pearton, S. J., Mat. Res. Soc. Symp. Proc. 482 609 (1998).Google Scholar
15. Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J. and Stall, R. A., Appl. Phys. Lett. 69 2364 (1996).Google Scholar
16. Burm, J., Chu, K., Davis, W. A., Schaff, W. J., Eastman, L. F. and Eustis, T. J., Appl. Phys. Lett. 70 464 (1997).Google Scholar
17. Zolper, J. C., Han, J., Biefeld, R. M., Deusen, S. B. Van, Wampler, W. R., Reiger, D. J., Pearton, S. J., Williams, J. S., Tan, H. H. and Stall, R., J. Electron. Mater. 27 179 (1998).Google Scholar
18. Zolper, J. C., Reiger, D. J., Baca, A. G., Pearton, S. J., Lee, J. W. and Stall, R. A., Appl. Phys. Lett. 69 538 (1996).Google Scholar
19. Fu, M., Sarvepalli, V., Singh, R. K., Abernathy, C. R., Cao, X. A., Pearton, S. J. and Sekhar, J. A., Mat. Res. Soc. Symp. Proc. 483 345 (1998).Google Scholar
20. Cao, X. A., Abernathy, C. R., Singh, R. K., Pearton, S. J., Fu, M., Sarvepalli, V., Sekhar, J. A., Zolper, J. C., Rieger, D. J., Han, J., Drummond, T. J., Shul, R. I. and Wilson, R. G., Appl. Phys. Lett. 73 229 (1998).Google Scholar
21. Feng, M. S., Guo, J. D. and Chi, G. C., Proc. Electrochem Soc. Vol. 95–2143 (1995).Google Scholar
22. Yi, C. C. and Wessels, B. W., Appl. Phys. Lett. 69 3026 (1996).Google Scholar
23. Bogulawski, P., Briggs, E. L. and Bernholc, J., Phys. Rev. B 51 17255 (1995).Google Scholar
24. Abernathy, C. R., MacKenzie, J. D., Pearton, S. J. and Hobson, W. S., Appl. Phys. Lett. 66 1969 (1995).Google Scholar