Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T19:26:49.148Z Has data issue: false hasContentIssue false

Real-Space Descriptions of Structural Energies in Metals

Published online by Cambridge University Press:  01 January 1992

J. Zou
Affiliation:
Department of Physics, Washington University, St. Louis, Missouri 63130-4899
Get access

Abstract

Two real-space methods for treating structural energetics of transition metals and compounds are described. The first uses a local description of the electronic density of states (DOS) in a tight-binding model to obtain an angular-force method containing up to four-body interaction terms. It is shown that this method yields bond-strengthening effects at surfaces which exceed those obtained by previous many-body potentials. Structural-energy calculations show that for W, several Frank-Kasper phases are only slightly higher in energy than the ground-state bcc structure; this near-degeneracy is driven by the energetic favorability of icosahedral sites. The second method uses a free-electron type approach to generate pair potentials for transition-metal solutes in Al. The calculated potentials have an oscillating form, with a much larger magnitude than those in Al. The potential is applied to complex Al-Mn phases, including the icosahedral quasicrystal. The results indicate that the oscillating pair potentials make a major contribution to stabilizing the complex phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlsson, A. E., in Solid State Physics: Advances in Research and Applications, edited by Ehrenreich, H. and Turnbull, D. (Academic Press, New York, 1990), p. 1.Google Scholar
2. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983); Phys. Rev. B 29, 6443 (1984).Google Scholar
3. Finnis, M. W. and Sinclair, J. M., Philos. Mag. A 50, 45 (1984); 53, 161 (1986).Google Scholar
4.Special efforts are usually required to stabilize the bcc crystal structure; see Ref. 3 and Adams, J. B. and Foiles, S. M., Phys. Rev. B 41, 3316 (1990).Google Scholar
5. Moriarty, J. A., Phys. Rev. B 38, 3199 (1988).Google Scholar
6. Moriarty, J. A. and Phillips, R., Phys. Rev. Lett. 66, 3036 (1991).Google Scholar
7. Carlsson, A. E., Phys. Rev. B 44, 6590 (1991).Google Scholar
8. Roelofs, L. D. and Foiles, S. M., Phys. Rev. Lett, (submitted).Google Scholar
9. Xu, W., Adams, J. B., Foiles, S. M., and Carlsson, A. E., Bull. Am. Phys. Soc. 37, 491, Abstract K22-4 (1992).Google Scholar
10. Roelofs, L. D., Ramseyer, T., Taylor, L. L., Singh, D., and Krakauer, H., Phys. Rev. B 40, 9147 (1989).Google Scholar
11.See Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, Ohio, 1986).Google Scholar
12. Fernando, G. W., Watson, R. E., Weinert, M., Wang, Y.J., and Davenport, J. W., Phys. Rev. B 41, 11813(1990).Google Scholar
13. Doherty, C. J., Poate, J. M., and Voorhoeve, R. J. H., J. Appl. Phys. 48, 2050 (1977).Google Scholar
14. Phillips, R. and Carlsson, A. E., Phys. Rev. B 42, 3345 (1990).Google Scholar
15. Steinhardt, P. J., Nelson, D. R., and Ronchetti, M., Phys. Rev. Lett. 47, 1297 (1981); Jonsson, H. and Andersen, H. C., Phys. Rev. Lett. 60, 2295 (1988).Google Scholar
16. Zou, J. and Carlsson, A. E., Phys. Rev. B (in press).Google Scholar
17. Maret, M., Pasturel, A., Senillou, C., Dubois, J. M., and Chieux, P., J. Phys. (France) 50, 295 (1989).Google Scholar