No CrossRef data available.
Article contents
Reduction of Excess Self-Interstitials in Silicon by Germanium and Silicon Implantation-Induced Damage
Published online by Cambridge University Press: 21 February 2011
Abstract
We have investigated a phenomena first reported by Pfiester and Griffin, that the presence of implanted Ge in Si can substantially reduce excess self-interstitial concentrations [ J. R. Pfiester and P. B. Griffin, Appl. Phys. Lett., 52, 471 (1988) ]. By studying the effects of Ge implantation on P diffusion, we are able to deduce that residual implantation damage can act as an efficient sink for self-interstitials. This effect can also be produced by Si self-implantation, demonstrating that there is nothing unique about the chemical indentity of Ge in reducing self-interstitial concentrations. Our experiments provide solid evidence that there is no unexpectedly strong interaction of Ge with self-interstitials, a situation that would undermine the validity of previous Ge diffusion experiments aimed at studying Si self-diffusion. Our experimental results show that the effect of Ge implantation on P diffusion is a complicated function of implantation conditions. Diffusion is affected by the order of thl P and Ge implants as well as by changes in implant energies and doses.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1989