Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T00:52:43.101Z Has data issue: false hasContentIssue false

Removal of Organic Phase in Alumina Parts by Thermal Treatment

Published online by Cambridge University Press:  01 October 2015

José J. Coronel-Hernández
Affiliation:
Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, Querétaro 76010, México.
Víctor M. Arellano-Badillo
Affiliation:
Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, Querétaro 76010, México.
José Santos-Cruz
Affiliation:
Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, Querétaro 76010, México.
Sandra A. Mayén-Hernández
Affiliation:
Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, Querétaro 76010, México.
Rocío Quintanar-Hernández
Affiliation:
Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas, Querétaro 76010, México.
Get access

Abstract

In this work it was conducted a pre heat treatment of a number of samples of alumina with organic binder in order to remove most of the organic phase. The treatment showed no effect on the physical properties of test specimens; green bodies remained stable during sintering process. Preheating at 100 °C for 4 h followed by heating at 300 °C for 4 h were the most favorable conditions to avoid formation of defects in the sintered pieces.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coronel, J.J., Leverkoehne, M., Janssen, R. and Claussen, N., Ceram. Eng. Sci. Proc. 22, 6774 (2001).CrossRefGoogle Scholar
Coronel, J.J., Janssen, R. and Claussen, N., Bol. Soc. Esp. Ceram. V. 43, 843848 (2004).CrossRefGoogle Scholar
Evans, J.R.G., in Plastics technology applied to ceramic suspensions, edited by Hausner, H. and Ziegler, G., (Proc. 4th Ceramitec Symp., Dt. Keram. Ges., Wiesbaden, 1993) pp. 81106.Google Scholar
German, R., in Powder Injection Molding, (Metal Powder Industries Federation, Princeton, 1990).Google Scholar
Lindqvist, K., Carlström, E., Persson, M., Carlsson, R., J. Am. Ceram. Soc. 72, 99103 (1989).CrossRefGoogle Scholar
Sajko, M., J. Mater. Sci. 32, 26472654 (1997).CrossRefGoogle Scholar
Seerden, K.A.M., Reis, N., Evans, J.R.G., Grant, P.S., Halloran, J.W. and Derby, B., J. Am. Ceram. Soc. 84, 25142520 (2001).CrossRefGoogle Scholar
Ender, S. and Messing, G.L., J. Am. Ceram. Soc. 83, 20412048 (2000).Google Scholar
Thomas-Vielma, P., Cervera, A. and Levenfeld, B., J. Eur. Ceram. Soc. 28, 763771 (2008).CrossRefGoogle Scholar
Vitorino, N., Abrantes, J.C.C. and Frade, J.R., Mater. Lett. 98, 120123 (2013).CrossRefGoogle Scholar