Published online by Cambridge University Press: 15 February 2011
Metallic Multilayers (MLs) have attracted a considerable interest during these last years because of their unusual properties. In small periods ML's (a few nm) the high density of interfaces give rise to structures very far from equilibrium. Au/Ni multilayers have been grown in the (111) orientation by M.B.E. on Si(100) via a Cu(100) buffer layer. Two different parameters have been studied: the Au:Ni ratio at constant (4 nm) superperiod and the superperiod at constant (1:1) Au:Ni ratio. The full strain state of Au and of Ni has been determined via x-ray diffraction measurements. The high lattice parameter misfit beween Au and Ni (14%) implies that all the layers are partially relaxed. Residual strains as high as several % are encountered. The residual strain in the Au layers is clearly correlated with their thickness. A residual stress as high as 3.9 GPa is determined in the thinner layers.