Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T03:29:34.208Z Has data issue: false hasContentIssue false

RF Microwave Switches Based on Reversible Metal-Semiconductor Transition Properties of VO2 Thin Films: An Attractive Way To Realise Simple RF Microelectronic Devices

Published online by Cambridge University Press:  01 February 2011

Frédéric Dumas-Bouchiat
Affiliation:
frederic.dumas-bouchiat@grenoble.cnrs.fr, Institut L. Néel UPR 2940 CNRS, Grenoble, France
Corinne Champeaux
Affiliation:
corinne.champeaux@unilim.fr, SPCTS UMR 6638, Univ Limoges / CNRS, Limoges, France
Alain Catherinot
Affiliation:
alain.catherinot@unilim.fr, SPCTS UMR 6638, Univ Limoges / CNRS, Limoges, France
Julien Givernaud
Affiliation:
julien.givernaud@xlim.fr, Xlim UMR 6172, Univ Limoges / CNRS, Limoges, France
Aurelian Crunteanu
Affiliation:
aurelian.crunteanu@xlim.fr, Xlim UMR 6172, Univ Limoges / CNRS, Limoges, France
Pierre Blondy
Affiliation:
pierre.blondy@xlim.fr, Xlim UMR 6172, Univ Limoges / CNRS, Limoges, France
Get access

Abstract

Microwave switches in both shunt and series configurations are developped using semiconductor to metal (SC-M) transition of vanadium dioxide (VO2) thin films deposited by in situ pulsed laser deposition on C-plane sapphire and SiO2/Si substrates. The influence of geometrical parameters such as the length of the switch is shown. The VO2-based switches exhibit up to 30-40 dB average isolation of the radio-frequency (RF) signal on a very wide frequency band (500 MHz-35 GHz) with weak insertion losses, when thermally activated. Furthermore, they can be electrically activated. Finally these VO2-based switches are integrated in the fabrication of innovative tunable band-stop filters which consist in a transmission line coupled with four U-shaped resonators and operate in 9-11 GHz frequency range. Its tunability is demonstrated using electrical activation of each VO2-based switch.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pozar, D. M., Microwave Engineering3rd ed., J. Wiley & Sons, (2005).Google Scholar
2. Rebeiz, G. M., RF MEMS Theory, Design, and Technology, New Jersey: J. Wiley & Sons, (2003).Google Scholar
3. Morin, F., Phys. Rev. Lett. 3, 34 (1959).Google Scholar
4. Zylbersztejn, A., Mott, N.F., Phys. Rev. B, 11[11], 4383 (1975)Google Scholar
5. Verleur, H.W., Barker, A. S. Jr, Berglund, C.N., Phys. Rev. 172 [3], 788 (1968).Google Scholar
6. Stefanovich, G., Pergament, A., Stefanovich, D., J. Phys.: Condens. Matter 12, 8837 (2000).Google Scholar
7. Chen, C., Wang, R., Shang, L., Guo, C., Appl. Phys. Lett. 93, 171101 (2008).Google Scholar
8. Cavalleri, A., Tóth, C., Siders, C.W., Squier, J.A., Ráksi, F., Forget, P., Kieffer, J.C., Phys. Rev. Lett. 87(23), 237401 (2001).Google Scholar
9. Ben-Messaoud, T., Landry, G., Gariépy, J.P., Ramamoorthy, B., Ashrit, P.V., Haché, A., Opt. Commun., doi:10.1016/j.optcom.2008.09.027.Google Scholar
10. Luz de Almeida, L.A., Deep, G.S., Nogueira Lima, A.M., IEEE Trans. Instrument. Measure. 50[4], 1020 (2001).Google Scholar
11. Chen, S., Ma, H., Yi, X., Wang, H., Tao, X., Chen, M., Li, X., Ke, C., Infrared Physics 1 Technology 45, 239 (2004).Google Scholar
12. Dumas-Bouchiat, F., Champeaux, C., Catherinot, A., Crunteanu, A. and Blondy, P., Appl. Phys. Lett. 91, 223505 (2007).Google Scholar
13. Chrisey, D B and Hubler, G K, Pulsed Laser Deposition of Thin Films New York: Wiley, (1994).Google Scholar
14. Eason, R., Pulsed Laser Deposition of thin films; Applications-led growth of functional materials, Wiley Interscience, (2007).Google Scholar
15. Griffith, C H and Eastwood, H K, J. Appl. Phys. 45, 2201 1974).Google Scholar
16. Youn, D., Lee, J., Chae, B., Kim, H., Maeng, S., and Kang, K., J. Appl. Phys. 95, 1407 2004).Google Scholar
17. Qazilbash, M. M., Brehm, M., Chae, Byung-Gyu, Ho, P.-C., Andreev, G. O., Kim, Bong-Jun, Yun, Sun Jin, Balatsky, A. V., Maple, M. B., Keilmann, F., Kim, Hyun-Tak,3 Basov, D. N., Science 318, 1750 (2007).Google Scholar
18. Givernaud, J., Champeaux, C., Catherinot, A., Pothier, A., Blondy, P., Crunteanu, A., IEEE MTT-S, IMS 2008, Atlanta, WEP1D-02.Google Scholar