Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T06:07:04.969Z Has data issue: false hasContentIssue false

Rheed Measurement and Chemical Kinetics of Chemical Beam Epitaxial growth of GaAs

Published online by Cambridge University Press:  28 February 2011

T.H. Chiu*
Affiliation:
AT&T Bell Laboratories, Holmdel, New Jersey 07733
Get access

Abstract

Recent efforts employing reflection high energy electron diffiaction measurements to study the chemical beam epitaxial growth of GaAs is reviewed. A reaction model which assumes the dominance of Ga alkyls and their derivatives adsorbed on the growing surface can explain most of the growth results in a consistent way. Dynamic evolution of the reconstruction pattern of the adsorbed triethylgallium or trimethylgallium overlayer illustrates how the alkyl-Ga bonds are cleaved sequentially. The growth rate dependence on temperature and incident flux can be fitted quite well in this reaction model. In the absence of As flux, the existence of a metastable Ga alkyl overlayer makes possible the atomic layer epitaxy of GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Manasevit, H.M., Appl. Phys. Lett. 12, 156 (1968).Google Scholar
2. Larsen, C.A., Buchan, N.I. and Stringfellow, G.B., Appl. Phys. Lett. 52, 480 (1987).CrossRefGoogle Scholar
3.For a review, see Tsang, W.T., J. Crystal Growth 81, 261 (1987).Google Scholar
4.A Robertson, Chiu, T.H., Tsang, W.T. and Cunningham, J.E., J. Appl. Phys. 64, 877 (1988).Google Scholar
5. Chiu, T.H., (submitted to Appl. Phys. Lett.)Google Scholar
6. Chiu, T.H., Tsang, W.T., Cunningham, J.E. and Robertson, A, J. Appl. Phys. 62, 2302 (1987); J. Vac. Sci. Tech. B6, 642 (1988).CrossRefGoogle Scholar
7. Neave, J.H., Joyce, B.A. and Dobson, P.J., Appl. Phys. A34, 179 (1984).Google Scholar
8. Neave, J.H., PJ. Dobson, Joyce, B.A. and Zhang, J., Appl. Phys. Lett. 47, 2 (1985).CrossRefGoogle Scholar
9. Arthur, J.R., J. Appl. Phys. 39, 4032 (1968).CrossRefGoogle Scholar
10. Chiu, T.H., Cunningham, J.E. and Robertson, A., J. Crystal Growth 95, 136 (1989).Google Scholar
11. Kobayashi, N., J.L Benchimol, Alexandre, F. and Gao, Y., Appl. Phys. Lett. 51, 1907 (1987).Google Scholar
12. Lewis, B.F., Grunthaner, F.J., Madhukar, A., Lee, T.C. and Fernandez, R., J. Vac. Sci. Tech. B3, 1317 (1985).CrossRefGoogle Scholar
13.For a review, see Goodman, C.H.L and Pessa, M.V., J. Appl.Phys. 60, R65 (1986).Google Scholar