Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:00:07.575Z Has data issue: false hasContentIssue false

Room Temperature Magnetoresistance in LaxCaYMnO3 Thin-Films Deposited by Liquid Delivery Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

D. Studebaker
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Drive, Danbury, CT 06810.
M. Todd
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Drive, Danbury, CT 06810.
G. Doubinina
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Drive, Danbury, CT 06810.
C. Seegal
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Drive, Danbury, CT 06810.
T. H. Baum
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Drive, Danbury, CT 06810.
Get access

Abstract

Liquid delivery, metal-organic chemical vapor deposition (MOCVD) was used to deposit high quality, A-site deficient crystalline films of LaxCayMnO3 where x + y < 1. The properties of the deposited thin-films are strongly dependent upon the film stoichiometry and display magnetoresistance repsonses at or above room temperature. Using Ca doped A-site deficient thin-films, we can shift the metal to insulator transition (Te) in a controlled manner to temperatures that are useful for commercial applications. Further, these films exhibit useful magnetoresistance at room temperature in relatively small applied magnetic fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Derbyshire, K. and Korczynski, E., “Giant Magnetoresistance lor Tomorrow's Hard Drives”, Solid State Technology, September, 57 (1995).Google Scholar
2. Singer, P., “Read/Write Heads: The MR Revolution”, Semiconductor International, February, 71 (1997).Google Scholar
3. von Helmont, R., Wecker, J., Holzapfel, B., Schulz, L. and Samwer, K., Phys. Rev Lett., 71, 2331 (1993).Google Scholar
4. Hwang, H.Y., Cheong, S-W., Radaelli, P.G., Marezio, M., and Batlogg, B., Phys. Rev. Lett. 75, 914(1995).Google Scholar
5. Gupta, A., McGuire, T. R., Duncombe, P. R., Rupp, M., Sun, J. Z., Gallagher, W. J. and Wang, G., Appl. Phys. Lett., 67 (23), 3494 (1995);Google Scholar
Sun, J.Z., Krusin-Elbaum, L., Gupta, A., Xiao, G., and Parkin, S.S.P., Appl. Phys. Lett., 69, 1002 (1997).Google Scholar
6. Li, Y.Q., Zhang, J., Pombrick, S., DiMascio, S., Stevens, W., Yan, Y.F., and Ong, N.P., J. Mater. Res. 10, 2166 (1995).Google Scholar
Dahmen, K. H. and Cams, M.W., Chem. Vup. Deposition, 3(1), p. 27 (1997).Google Scholar
7. Zhang, J., Gardiner, R.A., Kirlin, P.S., Boerstler, R.W., and Steinbeck, J., Appl. Phys. Lett. 61, 2882(1992).Google Scholar
8. Manoharen, S.S., Vasanthacharya, N.Y., Hegde, M.S., Satyalakshmi, K.M., Prasad, V., and Subramanyam, S.V., J. Appl. Phys., 76, 3923 (1994);Google Scholar
Jin, S., McCormack, M., Tiefel, T.H., and Ramesh, R., J. Appl. Phys, 76, 6929 (1994).Google Scholar
9. Hundley, M.F., Hawley, M., Heffner, R.H., Jia, Q.X., Neumeier, J.J., Tesmer, J., Thompson, J.D., and Wu, X.D., Appl. Pays. Lett. 67, 860 (1995).Google Scholar
10. Liu, J.Z., Chang, I.C., Irons, S., Klavins, P., Shelton, R.N., Song, K., and Wasserman, S.R., Appl. Phys. Lett., 66, 3218(1995).Google Scholar
11. Mather, N. D., Burnell, G., Issac, S. P., Jackson, T. F., Teo, B.-S., McManus-Driscoll, J. L., Cohen, L. F., Evetts, J. E., Blamire, M. G., Nature, 387, 266 (1997).Google Scholar
12. Wollan, E.O., and Koehler, W.C., Phys. Rev., 100, 545 (1955).Google Scholar
13. Trajanovic, Z., Kwon, C, Robson, M. C, Kim, K. -C., Rajeswari, M., Ramesh, R., Venkatensan, T., Lofland, S. E., Bhagat, S. M. and Fork, D., Appl. Phys. Lett., 69, 1005 (1996).Google Scholar