Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T13:21:53.738Z Has data issue: false hasContentIssue false

Roughness Exponents, Microstructure, Correlation Length, and the Possible Origin of Selfaffine Fracture

Published online by Cambridge University Press:  01 February 2011

M. Hinojosa
Affiliation:
FIME, Universidad Autónoma de Nuevo León, Mexico.
J. Aldaco
Affiliation:
FIME, Universidad Autónoma de Nuevo León, Mexico.
R. Rodríguez
Affiliation:
Inst. Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León, Mexico.
U. Ortiz
Affiliation:
FIME, Universidad Autónoma de Nuevo León, Mexico.
Get access

Abstract

The self-affine character of the fracture surfaces of metals, polymers and ceramics has been well documented over the past two decades. It has been established that these surfaces are selfaffine objects characterized by so called ‘universal’ roughness exponents independent of the microstructure and the loading conditions. Here we show that the self-affine correlation length is closely associated with the microstructure heterogeneities. We also explore the possibility of the existence of attractor values that govern the fracture process, as opposed to universal exponents. The possible origin of this behavior is also briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mandelbrot, B.B. , Passoja, , Paullay, Nature Vol. 308 19 April 1984.Google Scholar
2 Bouchaud, E. J. Phys.:Condens. Matter 9 (1997) 43194344 Google Scholar
3 González, V, Chacón, O, Hinojosa, M. and Guerrero, C., Fractals, V.10, (2002) 373386 Google Scholar
4 Bouchaud, E. Lappaset, G. and Planès, J., Europhys. Lett. Vol. 13, 73, 1990.Google Scholar
5 Daguier, P. Henaux, S. Bouchaud, E. and Creuzet, F. Phys. Rev. E. V. 53, p. 56375642, 1996.Google Scholar
6 Bouchaud, J.P. Bouchaud, E. Lapasset, G. and Planès, J., Phys. Rev. Lett. Vol. 71, 2240, 1993.Google Scholar
7 Bouchaud, E. Bouchaud, J-P, Planés, J. and Lapasset, G. Fractals Vol. 1, 1051, 1993.Google Scholar
8 Hinojosa, M. Bouchaud, E. and Nghiem, B. MRS Symp. Proc. V539, pp. 203208, 1999.Google Scholar
9 Hinojosa, M. and Aldaco, J., J. Mater. Res., Vol. 17, No. 6, Jun 2002, 12761282 Google Scholar
10 Aldaco, J. Garza, F.J. Hinojosa, M. MRS Symp. Proc. Vol. 578, pp. 351356, 2000.Google Scholar
11 Hinojosa, M. Aldaco, J., Ortiz, U., González, V., Aluminum Transactions, Vol. 3, No. 1, (2000), 5357.Google Scholar
12 West, J.K. Mecholsky, J.J. Jr, Hench, L.L. Journal of Non-Crystalline Solids 260, (1999) 99108 Google Scholar
13 Niño, J., Hinojosa, M. González, V., Materials Science Forum, accepted (2005)Google Scholar
14 Hinojosa, M. Aldaco, J. Ortiz, U. and González, J.A., Euromat 2000, pp. 14691474 Google Scholar
15 Hinojosa, M. González, V., Sánchez, J., Ortiz, U. Polymer 45 (2004) 48294836 Google Scholar
16 Guerrero, C. Reyes, E. González, V., Polymer 43 (2002) 66836693 Google Scholar