Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:28:45.806Z Has data issue: false hasContentIssue false

Selective Implantation Patterning and MBE Regrowth for Integration of Mm-Wave Application Heterojunction Devices

Published online by Cambridge University Press:  25 February 2011

Hans Brugger
Affiliation:
Daimlerbenz, Research Center, P.O. Box 2360, D-7900 Ulm (Germany)
Claus Wölk
Affiliation:
Daimlerbenz, Research Center, P.O. Box 2360, D-7900 Ulm (Germany)
Harald Müssig
Affiliation:
Daimlerbenz, Research Center, P.O. Box 2360, D-7900 Ulm (Germany)
Get access

Abstract

A technology based on a combination of selective implantation for lateral patterning and a following large area regrowth by molecular beam epitaxy (MBE) is introduced. The technology allows the monolithic integration of devices with different vertical layer sequences on s.i. GaAs substrates in a quasi planar way, e.g. a heterojunction field-effect-transistor (HFET) with a Schottky diode or a MESFET with a Schottky diode. Selective high resistive (>109 Ω/sq) and highly conducting (<20Ω/sq) buried layers are fabricated by high temperature stable oxygen and silicon implantation, respectively. The following MBE regrowth of epitaxial layers yields to an excellent surface morphology. HFET structures with pseudomorphic AlGaAs/InGaAs/GaAs heterostructures grown on implanted substrates exhibit a strong photoluminescence response. Carrier densities up to 2.0×1012cm−2 (1.6×1012cm−2) and Hall mobilities of 6150 cm2/Vs (17700 cm2/Vs) at 300 K (80 K) in the dark are achieved. The material quality is drastically improved by substrate preparation and in-situ cleaning prior to MBE regrowth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chao, P.C., Swanson, A., Brown, Ap., Mishra, U., AJi, F., and Yuen, C., in HEMTs & HBTs: Devices, Fabrication, and Circuits, edited by Ah, F. and Gupta, A. (Artec House, Boston, 1991), p. 77.Google Scholar
2. Garfield, D.G., Mattauch, R.J., and Weinreb, S., IEEE Transactions on Microwave Theory and Techniques 39, 1 (1991).Google Scholar
3. Ho, W.J., Sovero, E.A., Deakin, D.S., Stein, R.D., Sullivan, G.J., Higgins, J.A., Trinh, T.N., and August, R.R., Rec. of the IEEE GaAs Integrated Ciruits Symposium, 301 (1988).Google Scholar
4. Colquhoun, A., Ebert, G., Selders, J., Adelseck, B., Dieudonne, J.M., Schmegner, K.E., and Schwab, W., Proc. of the Galliumarsenide IC Symposium, San Diego, 185 (1989).Google Scholar
5. Favennec, P.N., Journal of Appl. Phys. 47, 2532 (1976).Google Scholar
6. Pearton, S.J., Nuclear Instruments and Methods in Physics Res. B59/60, 970 (1991).Google Scholar
7. Ch. Alt, H., Appl. Phys. Lett. 55, 2736 (1989).Google Scholar
8. Müssig, H. and Brugger, H. (unpublished).Google Scholar
9. Biersack, J.P. and Haggmark, L.G., Nucl. Inst. Meth. 174, 257 (1980).Google Scholar
10. Brugger, H., Müssig, H., Wölk, C., Kern, K., and Heitmann, D., Appl. Phys. Lett. 59, 2739 (1991).Google Scholar
11. Brugger, H., Müssig, H., Wölk, C., Berlec, F.J., Sauer, R., Kern, K., and Heitmann, D., Proc. of the Int. Symp. on GaAs and Related Compounds, Seattle, 1991 (Inst. Phys. Conf. Ser. 120, Bristol, 1992), p. 149.Google Scholar
12. Beck, W.A. and Anderson, J.R., J. Appl. Phys. 62, 541 (1987).Google Scholar
13. Brugger, H. and Völlinger, O. (unpublished).Google Scholar
14. Wenger, J., IEEE Electron Device Letters 14 (1993), in pressGoogle Scholar
15. Dämbkes, H., Narozny, P., Wenger, J., Wölk, C., Adelserk, B., Schroth, J., Schmegner, K., SplettstöBer, J., Werres, C., and Colquhoun, A., Proc. of the 3rd Int. Symp. on Recent Advances in Microwave Technology, ISRAMT-91, Reno (U.S.A.), 1991, p. 14 Google Scholar