Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T19:55:00.002Z Has data issue: false hasContentIssue false

Selective Preparation of Nickel Silicides and Germanides Using Elemental Multilayers as Reactive Precursors

Published online by Cambridge University Press:  11 February 2011

Jacob M. Jensen
Affiliation:
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, OR 97405
Sochetra Ly
Affiliation:
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, OR 97405
Xavier Kyablue
Affiliation:
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, OR 97405
David C. Johnson
Affiliation:
Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, OR 97405
Get access

Abstract

Using elemental multilayers with designed composition and ultrathin repeating subunits (λ=20 A) we have prepared nickel monosilicide and nickel germanide directly without the formation of any intervening phases. When the same synthetic strategy is used to prepare nickel-silicon-germanium compounds the first nucleated phase is a ternary phase with the NiAs structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Poate, J.M., Tu, K.N., and Mayer, J.N. ed., Thin Films - Interdiffusion and Reactions. (Wiley-Interscience, New York, 1978).Google Scholar
2 Walser, R.M. and Bene, R.W., App. Phys. Lett. 28 (10), 624 (1976).Google Scholar
3 Murarka, S.P., Silicides for VLSI Applications. (Academic Press, New York, 1983).Google Scholar
4 Hu, Y. and Tay, S.P., J. Vac. Sci. Tech. A 16 (3), 1820 (1998).Google Scholar
5 Holloway, K. and Clevenger, L., Mat. Res. Soc. Symp. Proc. 159, 153 (1990).Google Scholar
6 d'Anterroches, C., Nejat Yakupoglu, H., Lin, T.L. et al., Appl. Phys. Lett. 52 (6), 434 (1988).Google Scholar
7 Maex, K., Lauwers, A., Besser, P. et al., IEEE Trans. El. Dev. 46 (7), 1545 (1999).Google Scholar
8 Huang, F.Y., Zhu, X., Tanner, M.O. et al., J. Appl. Phys. 67 (4), 566 (1995).Google Scholar
9 Zhao, H.B., Pey, K.L., Choi, W.K. et al., J. Appl. Phys. 92 (1), 214 (2002);Google Scholar
Luo, J.-S., Lin, W.-R., Chang, C.Y. et al., J. Appl. Phys. 82 (7), 3621 (1997).Google Scholar
10 Thompson, R.D., Tu, K.N., Angillelo, J. et al., J. Electrochem. Soc. 135 (12), 3161 (1988).Google Scholar
11 Seger, J., Zhang, S.-L., Mangelinck, D. et al., Appl. Phys. Lett. 81 (11), 1978 (2002).Google Scholar
12 Fister, L., Li, X. M., Novet, T. et al., J. Vac. Sci. & Technol. A 11, 30143019 (1993).Google Scholar
13 Jensen, J. M., Ly, S., Kyablue, X. et al., unpublished results (2002).Google Scholar
14 ICDD PDF-2 database card 38–0844.Google Scholar
15 ICDD PDF-2 database card 07–0297.Google Scholar