Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T21:39:15.978Z Has data issue: false hasContentIssue false

Self assembled gold and silver nanoparticulates on silicon nanotips as surface enhanced Raman active substrates

Published online by Cambridge University Press:  01 February 2011

S. Chattopadhyay*
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei-106, Taiwan
H. C. Lo
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei-106, Taiwan
K. H. Chen
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei-106, Taiwan
C. H. Hsu
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei-106, Taiwan
L. C. Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei-106, Taiwan
*
a To whom correspondence should be addressed. E-mail: sur@diamond.iams.sinica.edu.tw
Get access

Abstract

Silicon nanotips, grown via electron cyclotron resonance plasma chemical vapour deposition, with apex diameters of ∼2nm and lengths of 1000 nm and densities of 1011/cm2 were used as a new substrate for surface enhanced Raman spectroscopy. Ion beam sputtered gold and silver self assemble on these substrates as nanoparticulates of 4–10 nm diameter and these metallic nanoparticulates assist in the surface enhancement of Raman signals of analytes. Molecules such as Rhodamine 6G and bis-Pyridyl ethylene of varied concentrations, in the range of 10-6-10-10 M, has been studied on these substrates and enhancements in the range of 106-108 were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nie, S., and Emory, S. R., Science 275, 1102 (1997)Google Scholar
2. Kneipp, K., Yang, Y., Kneipp, H., Parleman, L. T., Itzkan, I., Dasari, R. R., and Feld, M. S., Phys. Rev. Lett. 78, 1667 (1997)Google Scholar
3. Fleishmann, M., Hendra, P. J., and McQuillan, A. J., Chem. Phys. Lett. 26, 163 (1974)Google Scholar
4. Moskovits, Martin, Reviews of Modern Physics 57, 783 (1985)Google Scholar
5. Ni, F., and Cotton, T. M., Anal. Chem. 58, 3159 (1986)Google Scholar
6. Van Duyne, R. P., Hulteen, J. C., and Treichel, D. A., J. Chem. Phys. 99, 2101 (1993)Google Scholar
7. Schlegel, V. L., and Cotton, T. M., Anal. Chem. 63, 241 (1991)Google Scholar
8. Miller, S., Baiker, A., Meier, M., and Wokaun, A., J. Chem. Soc. Faraday Trans. 80, 1305 (1984)Google Scholar
9. Sudnik, L. M., Norrod, K. L., and Rowlen, K. L., Appl. Spectrosc. 50, 422 (1996)Google Scholar
10. Lo, H. C., Das, D., Hwang, J. S., Chen, K. H., Hsu, C. H., Chen, C. F., and Chen, L. C., Appl. Phys. Lett. 83, 1420 (2003)Google Scholar
11. Gunnarsson, L., Bjerneld, E. J., Xu, H., Petronis, S., Kasemo, B., and Kall, M., Appl. Phys. Lett. 78, 802 (2001)Google Scholar
12. Norrod, K. L., Sudnik, L. M., Rousell, David and Rowlen, K. L., Appl. Spectrosc. 51, 94 (1997)Google Scholar