Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T07:00:12.106Z Has data issue: false hasContentIssue false

A Selfconsistent-Charge Density-Functional Tight-Binding Scheme

Published online by Cambridge University Press:  10 February 2011

M. Elstner
Affiliation:
Technische Universität, Theoretische Physik III, D - 09107 Chemnitz, Germany German Cancer Research Center, Dept. Mol. Biophysics, INF 280, D-69120, Heidelberg
D. Porezag
Affiliation:
Technische Universität, Theoretische Physik III, D - 09107 Chemnitz, Germany
G. Jungnickel
Affiliation:
Technische Universität, Theoretische Physik III, D - 09107 Chemnitz, Germany
Th. Frauenheim
Affiliation:
Technische Universität, Theoretische Physik III, D - 09107 Chemnitz, Germany
S. Suhai
Affiliation:
German Cancer Research Center, Dept. Mol. Biophysics, INF 280, D-69120, Heidelberg
G. Seifert
Affiliation:
Technische Universität, Institut für Theoretische Physik, D - 01062 Dresden, Germany
Get access

Abstract

We present an extension to the tight-binding (TB) approach to improve total energies, forces and transferability in the presence of considerable long-range Coulomb interactions. We derive an approximate energy expression in terms of charge density fluctuations δn at a reference (input) density n0, which is a second order approximation to the total energy expression in density functional theory (DFT). With the choice of n0 as a superposition of densities of neutral atomic fragments, we can define a repulsive potential as in standard TB theory, which is pairwise, short ranged and transferable. The zero order terms in the total energy expression are recoverd as the standard terms of our density-functional based tight-binding (DF-TB). For the second order terms, the charge density fluctuations δn are approximated by the total charge fluctuation Δqα at atom α, which is qualitatively estimated by employing the Mullikan charge analysis. Within this approximations the total energy expression contains new parameters, which are related to ab-intio DFT calculations. Finally, by introducing localized basis functions and applying the variational principle we arrive at the Hamilton matrix elements, wich themselves depend on the charge fluctuations and, therefore, the general eigenvalue problem has to be solved self-consistently. To obtain forces for efficient geometry relaxation and molecular-dyamics, we calculated analytical derivatives of the total energy with respect to the atomic sites. In order to demonstrate the strenghts of our self-consistent-charge tight-binding (SCC-TB), we calculated reaction energies, geometries and vibrational frequencies for a large set of molecules and compare the results to semi-empirical methods, density-functional calculations and experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harris, J., Phys. Rev. 31 1770 (1985).Google Scholar
2. Foulkes, W., Haydock, R., Phys. Rev. B 39 12520 (1989).Google Scholar
3. Seifert, G., Eschrig, H., Bieger, W., Z. Phys. Chemie (Leipzig) 267 529 (1986).Google Scholar
4. Sutton, A. P., et al., J. Phys. C: Solid State Physics 21 35 (1988).Google Scholar
5. Sankey, O. F., Niklewski, D. J., Phys. Rev. B 40 3979 (1989).Google Scholar
6. Porezag, D., Frauenheim, Th., Köhler, Th., Seifert, G., Kaschner, R., Phys. Rev. B 51 12947 (1995).Google Scholar
7. Harrison, W. A., Phys. Rev. B 31 2121 (1985).Google Scholar
8. Kohn, W., Sham, L. J., Phys. Rev. 140A 1133 (1965).Google Scholar
9. Pariser, R., J. Chem. Phys. 24 125 (1956)Google Scholar
10. Dewar, M. J. S., Hojvat, N. L. (Sabelli), J. Chem. Phys., 34 1232 (1961),Google Scholar
Dewar, M. J. S., Sabelli, N. L., J. Phys. Chem., 66 2310 (1962),Google Scholar
11. Klopman, G., J. Am. Chem. Soc. 28 4550 (1964).Google Scholar
12. Mataga, N., Nishimoto, K., Z. phys. Chemie (Frankfurt), 13 140 (1957).Google Scholar
13. Elstner, M., et al., submittet to PRL.Google Scholar
14. Elstner, M., et al., to be published in Phys. Rev. B.Google Scholar
15. Andzelm, J., Wimmer, E., J. Chem. Phys. 96 1280 (1992).Google Scholar
16. Dewar, J. S. et al., J. Am. Chem. Soc. 107 3902 (1985)Google Scholar
17. Santarsiero, B. et al., J. Am. Chem. Soc. 112 9416 (1990).Google Scholar
18. Tajkhorsid, E., Paiz, B., Suhai, S., J. Phys. Chem. 1997 in press.Google Scholar
19. Tavan, B., Schulten, K., Osterhalt, D., Biophys. J. 47 415 (1985).Google Scholar
20. Tajkhorsid, E., Elstner, M., Frauenheim, T., Suhai, S., to be published.Google Scholar
21. Kolb, M., Thiel, W., J. Chem. Chem., 14 (1993) 775 Google Scholar