Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-05T21:27:15.701Z Has data issue: false hasContentIssue false

Sensor Response of Stilbite Single Crystals Under “in Situ” Conditions

Published online by Cambridge University Press:  11 February 2011

O. Schäf
Affiliation:
Laboratory MADIREL, University of Provence-CNRS (UMR 6121) Centre St-Jérôme, 13397 Marseille Cedex 20, France.
H. Ghobarkar
Affiliation:
Free University of Berlin, Institute for Mineralogy, Berlin, Germany
P. Knauth
Affiliation:
Laboratory MADIREL, University of Provence-CNRS (UMR 6121) Centre St-Jérôme, 13397 Marseille Cedex 20, France.
Get access

Abstract

The isothermal conductivity of natural stilbite single crystals depends on water content, polar organic molecule concentration and charge compensating cation species. The observed interaction processes are almost completely adsorptive at temperatures below 110°C; catalytic oxidation of the organic molecules is taking place at much higher temperatures, where zeolitic water is almost completely desorbed. A schematic model describing the observed conductivity modifications is developed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Meier, W.M., Olson, D.H. and Baerlocher, C., eds. Atlas of Zeolite Structure Types, 4threv. edn., Elsevier, London, Boston, Singapore, Sidney, Toronto, Wellington (1996)Google Scholar
[2] Gottardi, G., Galli, E., Natural Zeolites. Springer, Heidelberg, N.Y., Tokyo (1985)Google Scholar
[3] Karge, H.G., Weitkamp, J. (eds.), Molecular Sieves, Science and Technology Vol. 1, Synthesis. Springer, Berlin, Heidelberg, N.Y. (1998)Google Scholar
[4] Weitkamp, J., Puppe, L. (eds.), Catalysis and Zeolites, Fundamentals and Application, Springer Verlag, Berlin, Heidelberg, N.Y., London, Paris, Tokyo (1999)Google Scholar
[5] Simonot-Grange, M.H., Clays and Clay Minerals 27(6) (1979) 423428 Google Scholar
[6] Ghobarkar, H., Schäf, O. and Guth, U., Progr. Solid State Chem. 27 (1999) 2973 Google Scholar
[7] Beattie, I.R., Trans. Faraday Soc. 50 (1954) 581587 Google Scholar
[8] Freeman, D.C., Stamires, D.N., J. Chem. Physics 35(3) 1961) 799806 Google Scholar
[9] Jansen, F.J., Schoonheydt, R., J. Chem. Soc. Farad. Trans. I (1973) 13381355 Google Scholar
[10] Mortier, W.J., Schoonheydt, R., Prog. Solid State Chem. 16 (1985) 1125 Google Scholar
[11] Galli, E., Acta Cryst. B 27 (1971) 833841 Google Scholar
[12] Schäf, O., Ghobarkar, H. and Guth, U., Ionics 3 (1997) 282288 Google Scholar
[13] Schäf, O., Ghobarkar, H., Steinbach, A.C., Guth, U., Fresenius J. Anal. Chem. 367 (2000) 388392 Google Scholar
[14] Schäf, O., Ghobarkar, H., Adolf, F., Knauth, P., Solid State Ionics 143(3/4) (2001) 433444 Google Scholar
[15] Schäf, O., Ghobarkar, H., Proceedings Conference on Basic Science and Advanced Technology, BSAT-II, Nov. 5–7, 2000 Assiut, Egypt, Vol.1, 3564 Google Scholar
[16] Kelemen, G., Lortz, W., Schön, G., J. Mat. Sci. 24 (1989) 333338 Google Scholar
[17] Krogh-Andersen, E., Krogh Andersen, I.G., Skou, E., Proton Conduction in Zeolites in: Proton Conductors, Columban, P. (ed), Cambridge University Press, Cambridge (1992)Google Scholar
[18] Resing, H.A., Thomson, J.K. in: Molecular Sieve Zeolites I, Flanigen, M. et al. (eds). Adv. Chem. Series 101, American Chemical Society (1971)Google Scholar