Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T11:47:31.993Z Has data issue: false hasContentIssue false

Si Nanoparticle Synthesis and Self – Organization

Published online by Cambridge University Press:  11 February 2011

J. D. Fowlkes
Affiliation:
Dept. of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 – 2000
A. J. Pedraza
Affiliation:
Dept. of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 – 2000
Get access

Abstract

Si nanoparticle linear arrays have been produced by pulsed KrF laser irradiation in inert atmospheres. The Si nanoparticles have a Gaussian size distribution with a mean diameter of 2.9 nm and a FWHM of 2 nm. The self – organized lines are spaced at a distance approximately equal to the laser beam wavelength, λ. The evolution of this self – organization process and that of laser – induced periodic surface structures (LIPSS) are closely related. The nanoparticles scatter light that interferes with the incident light. Similar to LIPSS, the inhomogeneous deposition of laser light due to this interference pattern created at the surface drives the particle formation and clustering. A detailed study of the clustering formation as a function of the laser pulses is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Makimura, T., Kunii, Y., and Murikami, K., Jpn. J. Appl. Phys. 35, 4780 (1996)Google Scholar
Lowndes, D. H., Rouleau, C. M., Thundat, T. G., Duscher, G, Kenik, E. A., and Pennycook, S. J., J. Mater. Res. 14(2), 359 (1999)Google Scholar
[3] Patrone, L., Nelson, D., Safarov, V. I., Sentis, M., and Marine, W., J. Appl. Phys. 87(8), 3829 (2000)Google Scholar
[4] Makino, T., Suzuki, N., Yamada, Y., Yoshida, T., Seto, T., and Aya, N., Appl. Phys. A 69[Suppl], S243 (1999)Google Scholar
[5] Iyer, S. S. and Xie, Y. –H., Science 260, 40 (1993)Google Scholar
[6] Nassiopoulos, A. G., Grigoropoulos, S., and Papadimitriou, D., Appl. Phys. Lett. 69(15), 2267 (1996)Google Scholar
[7] Choi, B. H., Hwang, S. W., Kim, I. G., Shin, H. C., Kim, Y., and Kim, E. K., Appl. Phys. Lett. 73(21), 3129 (1998)Google Scholar
[8] Fowlkes, J. D., Pedraza, A. J., Blom, D. A., and Meyer, H. M. III, Appl Phys. Lett. 80(20), 1 (2002)Google Scholar
[9] Pedraza, A. J. and Fowlkes, J. D., J. Mater. Res. 17(11), 1 (2002)Google Scholar
[10] Pedraza, A. J., Fowlkes, J. D., and Lowndes, D. H., Appl. Phys. A 69, S731 (1999)Google Scholar
[11] Lowndes, D. H., Fowlkes, J. D., and Pedraza, A. J., Appl. Sur. Sci. 154 – 155, 647 (2000)Google Scholar
[12] Pedraza, A. J., Fowlkes, J. D., Jesse, S., Mao, C., and Lowndes, D. H., Appl. Sur. Sci. 168, 251 (2000)Google Scholar
[13] Fowlkes, J. D., Pedraza, A. J., and Lowndes, D. H., Appl. Phys. Lett. 77(11), 1629 (2000)Google Scholar
[14] Pedraza, A. J., Jesse, S., Guan, Y. F., and Fowlkes, J. D., J. Mater. Res. 16(12), 3599 (2001)Google Scholar
[15] Young, J. F., Sipe, J. E., Preston, J. S., vanDriel, H. M., Appl. Phys. Lett. 41(3), 261 (1982)Google Scholar