Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:55:44.072Z Has data issue: false hasContentIssue false

Si1−xGex Island Formation by Post-Growth Anneal on Supercritical Layers Grown by RPCVD

Published online by Cambridge University Press:  10 February 2011

K. Grimm
Affiliation:
Institut für Schicht- und lonentechnik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany Laboratory of ECTM, DIMES, TU Delft, Feldmannweg 17, 2628 CB Delft, The Netherlands
L. Vescan
Affiliation:
Institut für Schicht- und lonentechnik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
L.K. Nanver
Affiliation:
Laboratory of ECTM, DIMES, TU Delft, Feldmannweg 17, 2628 CB Delft, The Netherlands
C.C.G. Visser
Affiliation:
Laboratory of ECTM, DIMES, TU Delft, Feldmannweg 17, 2628 CB Delft, The Netherlands
H. Lüthl
Affiliation:
Institut für Schicht- und lonentechnik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

SiGe island layers have been created by post growth anneal on supercritical layers grown at low temperatures (500°C) and high hydrogen pressures (40 Torr). The epitaxial growth has been performed in a commercially available single wafer RPCVD reactor using SiH2Cl2 and GeH4 as precursor gasses. SiGe layers grown under these conditions exceed the critical thickness for the onset of elastic relaxation reported for lower hydrogen pressures as well as the critical thickness for plastic relaxation by more than one order of magnitude. A subsequent anneal step is used to form the islands. This procedure allows some degree of control in the formation of SiGe islands. High island densities and uniform size distributions were achieved. Photoluminescence as well as electroluminescence measurements of these layers show strong emission from SiGe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chretien, O., Apetz, R., Vescan, L., Souifi, A., Lueth, H., Appl. Surf. Sci., 102, 237241 (1996)Google Scholar
2 Apetz, R., Vescan, L., Hartmann, A., Dieker, C., Lueth, H., Appl. Phys. Lett., 66, 445447 (1995)Google Scholar
3 Vescan, L. and Stoica, T., Journal of Luminescence, 80, 485489 (1999)Google Scholar
4 Stoica, T., Vescan, L. and Goryll, M., J. Appl. Phys., 83, 3367 (1998)Google Scholar
5 Deng, X., Weil, J.D., and Krishnamurthy, M., Physical Review Letters, 80 (21), 4721–23 (1998)Google Scholar
6 Perovic, D.D. et al. , Mat. Res. Soc. Symp. Proc., 399, 325336 (1996)Google Scholar
7 Grützmacher, D.A. et al. , Vacuum, 46, 947950 (1995)Google Scholar
8 Grimm, K., Vescan, L., Visser, C.C.G., Nanver, L.K., Lüth, H., Mat. Sci. & Eng. B, 69–70, 261265 (2000)Google Scholar
9 Sutton, A.P. and Balluffi, R.W., Interfaces in Crystalline Materials, Oxford Science Publications, Oxford (1995)Google Scholar