No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Silver (Ag) nanoparticles dispersed in an amorphous silica (SiO2) matrix or coated by a SiO2 layer were synthesized by flame spray pyrolysis (FSP). The coated nanoparticles were produced by using a modified enclosed FSP setup, in which the SiO2 precursor was injected through a ring above the FSP nozzle at various burner-ring-distances (BRDs), after the core Ag nanoparticles had been formed. The produced nanoparticles were characterized by XRD, BET, TEM and UV/vis analysis. The Ag particle size was possible to be controlled by tuning the FSP parameters. For the SiO2 coated nanoparticles, larger Ag core sizes were obtained for higher BRDs. All the produced nanoparticles exhibited the characteristic plasmon resonance frequency of Ag nanoparticles.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.