Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T19:36:25.317Z Has data issue: false hasContentIssue false

Size Distribution Of Embedded Nano-Crystallites In Polymorphous Silicon Studied By Raman Spectroscopy And Photoluminescence

Published online by Cambridge University Press:  01 February 2011

V. Tripathi
Affiliation:
Department of Physics, IIT, and Kanpur-208016, INDIAE-mail:vibha@iitk.ac.inMd. N. Islam QAED/SRG, Space Application Centre (ISRO), Ahemdabad-380015 (India)
Y. N. Mohapatra
Affiliation:
Department of Physics, IIT, and Kanpur-208016, INDIAE-mail:vibha@iitk.ac.inMd. N. Islam QAED/SRG, Space Application Centre (ISRO), Ahemdabad-380015 (India)
V. Suendo
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex, France
P. Roca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 du CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex, France
Get access

Abstract

Polymorphous Silicon (pm-Si:H) deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) has emerged as an alternative material to amorphous silicon (a-Si:H). Deposition parameters of pm-Si:H are such that small crystallites get embedded in a relaxed amorphous silicon matrix, thus improving the optical and electrical properties. We study the size of crystallites and degree of order in pm-Si:H using Raman and photoluminescence (PL) spectra of pm-Si:H and a-Si:H. Raman Spectra of a variety of hydrogenated nanostructured silicon (pmSi:H) and amorphous Silicon (a-Si:H) samples grown at different pressures were analyzed. Deconvolution of observed multiple peaks in photoluminescence spectra and fitting to Gaussian size distribution also yields particle size to be in the range of 2.3 to 3.5nm in agreement with Transmission Electron Microscopy and Raman results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morral, A. Fontecuberta i, Hofmeister, H., Cabarrocas, P. Roca i, J. Non Cryst. Solids (299-302),284,(200)Google Scholar
2. Meaudre, M., Meaudre, R., , Butté, Vignoli, S., Longeaud, C., Kleider, J. P., and Cabarrocas, P. Roca i., J. Appl. Phys. 86, 946 (1999).Google Scholar
3. Voz, C., Puigdollers, J., Orpella, A., Alcubilla, R., A. Fontecuberta Morral, i., Tripathi, V., Cabarrocas, P. Roca i., J. Non Cryst. Sol. 299-302, 1345 (2002)Google Scholar
4. Park, M.-B. and Cho, N.-H., Appl. Surf. Sci., 190 151156, 2002.Google Scholar
5. Viera, G., Huet, S., Bertran, E., Boufendi, L., J. Appl. Phys, 90 (8) 4272 (2001).Google Scholar
6. Proot, J.P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).Google Scholar
7. Cabarrocas, P. Roca i, Chévrier, J. B., Huc, J., Lloret, A., Parey, J. Y., and Schmitt, J. P. M., J. Vac. Sci. Technol. A 9, 2331 (1991)Google Scholar
8. Richter, H., Wang, Z. P., and Ley, L., Solid State Commun. 39, 625 (1981).Google Scholar
9. Rodrigues, P. A. M., Cerdeira, H. A., and Cerdeira, F., Int. J. Mod. Phys.B 3, 1167 (1989).Google Scholar
10. Campbell, I. H., and Fauchet, P. M., Solid State Commun. 58, 739 (1986).Google Scholar
11. Islam, Md. N., and Kumar, S., App. Phys. Lett., 78(6) 715 (2001)Google Scholar
12. Islam, Md. N. and Kumar, Satyendra, J. Appl. Phys., 93(11) 1753 (2003).Google Scholar
13. Voyles, P. M., Zotov, N.; Nakhmanson, S. M., Drabold, D. A., Gibson, J. M., Treacy, M. M. J., and Keblinski, P., J. Appl. Phys 90(9), 4438 (2001).Google Scholar
14. Kshirsagar, S. T., and Lannin, J. S., Phys. Rev. B 25, 2196 (1982).Google Scholar