Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T18:11:21.106Z Has data issue: false hasContentIssue false

Size-Dependent Elastic Moduli of FCC Crystal Nanofilms

Published online by Cambridge University Press:  01 February 2011

Shih-Hsiang Chang
Affiliation:
shchang@cc.fec.edu.tw, Far East College, Mechanical Engineering, 49, Chung-Hwa Road, Hsin-Shih, Tainan, N/A, 744, Taiwan, 886-6-5977511, 886-6-5977970
I-Ling Chang
Affiliation:
imeilc@ccu.edu.tw, National Chung Cheng University, Department of Mechanical Engineering, Chia-Yi, N/A, 621, Taiwan
Get access

Abstract

A semi-continuum model is constructed to study the size effects on the mechanical properties of face-cubic-center crystal structure nanofilms. Unlike the classical continuum theory, the current model directly takes the discrete nature in the thickness direction into consideration. In-plane and out-plane Poisson's ratios as well as in-plane Young's modulus are investigated with this model. It is found that the values of the Young's modulus and Poisson's ratio depend on the film thickness and approach the respective bulk values asymptotically.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vettiger, P., Brugger, J., Despont, M., Drechsler, U., Dürig, U., Häberle, W., Lutwyche, M., Rothuizen, H., Stutz, R., Widmer, R., and Binnig, G., Microelectron. Eng. 46, 11 (1999).Google Scholar
2. Kabacoff, L.T., AMPTIAC Quarterly 6, 37 (2002).Google Scholar
3. Broughton, J.Q., Meli, C.A., Vashishta, P., and Kalia, R.K., Phys. Rev. B 56, 611 (1997).Google Scholar
4. Rudd, R.E., Broughton, J.Q., J. Model. Simul. Microsyst. 1, 29 (1999).Google Scholar
5. Petersen, K., and Guarnieri, C., J. Appl. Phys. 50, 6761 (1979).Google Scholar
6. Jankowski, A.F. and Tsakalakos, T., J. Phys. F. Met. Phys. 15, 1279 (1985).Google Scholar
7. Cammarata, R.C. and Sieradzki, K., Phys. Rev. Lett. 62, 2005 (1989).Google Scholar
8. Yang, W.M.C, Tsakalakos, T., and Hilliard, J.E., J. Appl. Phys. 48, 876 (1977).Google Scholar
9. Baral, D., Ketterson, J.B., and Hilliard, J.E., J. Appl. Phys. 57, 1076 (1985).Google Scholar
10. Salvadori, M.C., Brown, I.G., Vaz, A.R., Melo, L.L., and Cattani, M., Phys. Rev. B 67, 153404 (2003).Google Scholar
11. Salvadori, M.C., Vaz, A.R., Melo, L.L., and Cattani, M., Surf. Rev. Lett. 10, 571 (2003).Google Scholar
12. Villain, P., Goudeau, P., Renault, P.O., and Badwi, K.F., Appl. Phys. Lett. 81, 4365 (2002).Google Scholar
13. Ruud, J.A., Jervis, T.R., and Spaepen, F., J. Appl. Phys. 75, 4969 (1994).Google Scholar
14. Streitz, F.H., Sieradzki, K., and Cammarata, R.C., Phys. Rev. B 41, 12285 (1990).Google Scholar
15. Zhou, L.G., and Huang, H.C., Appl. Phys. Lett. 84, 1940 (2004).Google Scholar
16. Sun, C. T. and Zhang, H., J. Appl. Phys. 93, 1212 (2003).Google Scholar
17. Milstein, F., J. Appl. Phys. 44, 3825 (1973).Google Scholar