Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T19:19:26.699Z Has data issue: false hasContentIssue false

Solid State NMR Characterization of Nano-crystalline hydroxy-carbonate Apatite Using 1H-31P-13C Triple Resonance Experiments

Published online by Cambridge University Press:  26 February 2011

Florence Babonneau
Affiliation:
fb@ccr.jussieu.fr University P. et M. Curie Chemistry 4 place Jussieu Paris 75252 France
Florence Babonneau
Affiliation:
bonhomme@ccr.jussieu.fr Universite P. et M. Curie Paris 75252 France
Christian Bonhomme
Affiliation:
bonhomme@ccr.jussieu.fr Universite P. et M. Curie Paris 75252 France
Satoshi Hayakawa
Affiliation:
satoshi@cc.okayama-u.ac.jp Faculty of Engineering Okayama 700 8530 Japan
Akiyoshi Osaka
Affiliation:
osaka@cc.okayama-u.ac.jp Faculty of Engineering Okayama 700 8530 Japan
Get access

Abstract

The local structure around hydrogen atoms, phosphate ions and carbonate ions in nano crystalline nonstoichiometric hydroxy-carbonate apatite was investigated in this study. The use of 13C enriched precursors allowed to perform 1D and 2D CP MAS HETCOR (HETeronuclear CORrelation) experiments with 13C as a target spin. 2D triple resonance experiments involving the 1H/13C/31P spins were also performed. All these experiments led to the partial editing of the corresponding projection spectra and revealed fine structural details for the corresponding material. At least four 13C peaks, corresponding to carbonate ions in A sites (OH-) and B-sites (PO4 3-) were evidenced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. LeGeros, R. Z., in Hydroxyapatite and Related Materials, CRC Press, Boca Raton, FL, 3 (1994).Google Scholar
2. Driessens, F. C. M., in Bioceramics of Calcium Phosphates, CRC Press, Boca Raton, FL, 1 (1983).Google Scholar
3. Pickard, C. J. and Mauri, F., Phys. Rev. B 63, 245101 (2001).Google Scholar
4. Gervais, C., Dupree, R., Pike, K., Bonhomme, C., Profeta, M., Pickard, C. J. and Mauri, F., J. Phys. Chem. A 109, 6960 (2005).Google Scholar
5. Astala, R. and Stott, M. J., Chem. Mater. 17, 4125 (2005).Google Scholar
6. Peroos, S., Du, Z. and de Leeuw, N. H., Biomaterials 27, 2150 (2006).Google Scholar
7. Suetsugu, Y. and Tanaka, J., J. Mater. Sci.: Mater. Med. 10, 561 (1999).Google Scholar
8. Hediger, S., Meier, B. H. and Ernst, R. R., Chem. Phys. Lett. 240, 449 (1995).Google Scholar
9. Azaïs, T., Bonhomme-Coury, L., Vaissermann, J., Bertani, P., Hirschinger, J., Maquet, J. and Bonhomme, C., Inorg. Chem. 41, 981 (2002).Google Scholar
10. Cho, G., Wu, Y. and Ackerman, J. L., Science 300, 1123 (2003).Google Scholar
11. Jaeger, C., Welzel, T., Meyer-Zaika, W. and Epple, M., Magn. Reson. Chem. 44, 573 (2006).Google Scholar
12. Beshah, K., Rey, C., Glimcher, M. J., Schimizu, M. and Griffin, R., J. Solid State Chem. 84, 71 (1990).Google Scholar
13. Sfihi, H. and Rey, C., in Magnetic Resonance in Colloid and Interface Science, Nato ASI II, Kluwer Acad. Publisher 76, 409 (2002).Google Scholar