Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:44:02.635Z Has data issue: false hasContentIssue false

Solid-State Reactions in Multilayer Ni/Ti Thin Film Composites

Published online by Cambridge University Press:  26 February 2011

Gillian E. Winters
Affiliation:
Department of Physics and Astronomy, University of Delaware, Newark, DE 197X6
K.M. Unruh
Affiliation:
Department of Physics and Astronomy, University of Delaware, Newark, DE 197X6
C.P. Swann
Affiliation:
Department of Physics and Astronomy/Barto1 Research Institute, University of Delaware, Newark, DE 19716
M.E. Patt
Affiliation:
Department of Physics and Astronomy/Barto1 Research Institute, University of Delaware, Newark, DE 19716
B.E. White
Affiliation:
Department of Physics, Applied Physics, and Astronomy, State University of New York at Binghamton, Binghamton, NY 13901
E.J. Cotts
Affiliation:
Department of Physics, Applied Physics, and Astronomy, State University of New York at Binghamton, Binghamton, NY 13901
Get access

Abstract

Multilayer films, consisting of alternating layers of crystalline Ni and Ti, have been prepared by RF sputter deposition over a range of modulation wavelengths corresponding to an overall composition of Ni50Ti50. These films have been characterized by xray diffraction and Rutherford backscattering measurements. The solid-state transformation by interdiffusional mixing of the individual layers has been directly studied by differential scanning calorimetry and correlated with structural measurements. These measurements indicate that the solid-state reaction of Ni and Ti multilayers proceeds through the formation of a metastable solid solution of Ti in Ni followed by the formation of intermetallic equilibrium compounds. No direct calorimetric or structural evidence for the formation of an amorphous Ni-Ti phase has been found in these samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 ) See e.g. Hilsch, R., in Non-Crystalline Solids, edited by Frechette, V.D. (John Wiley & Sons, New York, 1960), Chapt. 15; P. Duwez, in Progress in Solid State Chemistry, vol. 3 (Pergamon Press, Oxford, 1966), Chapt. 8.Google Scholar
2 ) Yeh, X.L., Samwer, K., and Johnson, W.L., Appl. Phys. Lett. 42, 242 (1983).Google Scholar
3 ) Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
4 ) See e.g. Johnson, W.L., Prog. Mater. Sci. 30, 81 (1986); Proceedings of the Sixth International Conference on Rapidly Quenched Metals in Mat. Sci. Eng. 97 (1988); Proceedings of the Conference on Solid State Amorphizing Transformations in J. Less-Common Met. 140 (1988).Google Scholar
5 ) Clemens, B.M., Phys. Rev. B33, 7615 (1986); B.M. Clemens, J. Appl. Phys. 61, 4525 (1987); W.J. Meng, B. Fultz, E. Ma, and W.L. Johnson, Appl. Phys. Lett. 51, 661 (1987); J.F. Jongste, M.A. Hollanders, B.J. Thijsse, and E.J. Mittemeijer, Mat. Sci. Eng. 97, 101 (1988); M.A. Hollanders and B.J. Thijsse, J. Less-Common Met. 140, 33 (1988); M.A. Hollanders and B.J. Thijsse, J. Non-Cryst. Sol. 117/118, 696 (1990).Google Scholar
6 ) Hollanders, M.A., Thijsse, B.J., and Mittemeijer, E.J., Phys. Rev. B42, 5481 (1990).CrossRefGoogle Scholar
7 ) Schwarz, R.B., Petrich, R.R., and Saw, C.K., J. Non-Cryst. Solids 76, 281 (1985); R.B. Schwarz and C.C. Koch, Appl. Phys. Lett. 49, 146 (1986); B.P. Dolgin, M.A. Vanek, T. McGory, and D.J. Ham, J. Non-Cryst. Solids 87, 281 (1986); R.B. Schwarz and R.R. Petrich, J. Less-Common Met. 140, 171 (1988); S. Enzo, L. Schiffini, L. Battezzati, and G. Cocco, J. Less-Common Met. 140, 129 (1988); G. Cocco, S. Enzo, L. Schiffini, and L. Battezzati, Mat. Sci. Eng. 97, 43 (1988); S. Enzo, M. Sampoli, G. Cocco, L. Schiffini, and L. Battezzati, Philos. Mag. B 59, 169 (1989).Google Scholar
8 ) White, B.E., Patt, M.E., and Cotts, E.J., J. Appl. Phys. 68, 1910 (1990); B.E. White, M.E. Patt, E.J. Cotts, Phys. Rev. B, in press.Google Scholar
9 ) Battezzati, L., Cocco, G., Schiffini, L., and Enzo, S., Mat. Sci. Eng. 97, 121 (1988).Google Scholar
10 ) Elderton, W.D. and Johnson, N.L., Systems of Frequency Curves (Cambridge University Press, London, 1969). p. 45.Google Scholar
11 ) Zoltzer, K. and Bormann, R., J. Less-Common Met. 140, 335 (1988).Google Scholar
12 ) Winters, G.E., Unruh, K.M., and Swann, C.P., to be published.Google Scholar