Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T03:40:38.944Z Has data issue: false hasContentIssue false

Solvothermal Routes for Synthesis of Zinc Oxide Nanorods

Published online by Cambridge University Press:  15 February 2011

Nelson S. Bell*
Affiliation:
Sandia National Laboratories P.O. Box 5800-1411 Albuquerque, NM 87185
Get access

Abstract

Control of the synthesis of nanomaterials to produce morphologies exhibiting quantized properties will enable device integration of several novel applications including biosensors, catalysis, and optical devices. In this work, solvothermal routes to produce zinc oxide nanorods are explored. Much previous work has relied on the addition of growth directing/inhibiting agents to control morphology. It was found in coarsening studies that zinc oxide nanodots will ripen to nanorod morphologies at temperatures of 90 to 120 °C. The resulting nanorods have widths of 9-12 nm average dimension, which is smaller than current methods for nanorod synthesis. Use of nanodots as nuclei may be an approach that will allow for controlled growth of higher aspect ratio nanorods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Alivisatos, P.A., Nature Biotech. 22 (2004) 4752.Google Scholar
2 Tang, Z.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Appl. Phys. Lett. 72 (1998) 32703272.Google Scholar
3 , Copper, Silver, Gold, and Zinc, Cadmium, Mercury Oxides and Hydroxides, IUPAC Solubility Data Series, Vol. 23, Dirkse, T.P., Ed., Pergamon Press, New York, 1986, pp. 156264.Google Scholar
4 Manna, L., Scher, E.C., and Alivisatos, A.P., “J. Cluser Sci. 13 (2002) 521531.Google Scholar
5 Puntes, V.F., Krishnan, K.M., and Alivisatos, A.P., Science 291 (2001) 21152117.Google Scholar
6 Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P., Nature 404 (2000) 5961.Google Scholar
7 Peng, Z.A. and Peng, X., J. Am. Chem. Soc. 123 (2001) 13891395.Google Scholar
8 Nie, Q.-L., Xu, Z.-D., Yuan, Q.-L., and Li, G.-H., Mat. Chem. Phys. 82 (2003) 808811.Google Scholar
9 Chittofrati, A. and Matijevic, E., Coll. Surf. 48 (1990) 6578.Google Scholar
10 Costa, M.E.V. and Baptista, J.L., J. Euro. Ceram. Soc. 11 (1993) 275281.Google Scholar
11 Hu, Z., Oskam, G., and Searson, P.C., J. Coll. Interface Sci. 263 (2003) 454460.Google Scholar
12 Collins, I.R. and Taylor, S.E. Jr, J. Mater. Chem. 2 (1992) 1277.Google Scholar
13 Jezequel, D., Guenot, J., Jouini, N., and Fievet, F., J. Mater. Res. 10 (1995) 7783.Google Scholar
14 Cozzoli, P.D, Curri, M.L., Agostino, A., Leo, G., and Lomascolo, M., J. Phys. Chem. B 107 (2003) 47564762.Google Scholar
15 Verges, M.A., Mifsud, A., and Serna, C.J., J. Chem. Soc. Faraday Trans. 86 (1990) 959963.Google Scholar
16 Chen, D., Jiao, X., and Cheng, G., Solid State Comm. 113 (2000) 363366.Google Scholar
17 Taubert, A., Glasser, G., and Palms, D., Langmuir 18 (2002) 44884494.Google Scholar
18 Wong, E.M., Hoertz, P.G., Jiang, C.L., Shi, B.-M., Meyer, G.J., and Searson, P.C., Langmuir 17 (2001) 83628367.Google Scholar
19 Lu, C.-H. and Yeh, C.-H., Ceramics Intl. 26 (2000) 351357.Google Scholar
20 Koch, U., Fojtik, A., Weller, H., and Henglein, A., Chem. Phys. Lett. 122 (1985) 507510.Google Scholar
21 Bahnemann, D.W., Kormann, C., and Hoffman, M. R., J. Phys. Chem. 91 (1987) 37893798.Google Scholar
22 Schmidt, T., Muller, G., Spanhel, L., Kerkel, K., and Forchel, A., Chem. Mater. 10 (1998) 6571.Google Scholar
23 Spanhel, L. and Anderson, M.A., J. Am. Chem. Soc. 113 (1991) 28262833.Google Scholar
24 Cheng, B. and Samulski, E.T., Chem. Comm. (2004) 986987.Google Scholar
25 Liu, B. and Zeng, H.C., JACS Comm. 125 (2003) 44304431.Google Scholar
26 Wang, J. and Gao, L., Solid State Comm. 132 (2004) 269271.Google Scholar
27 Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W., and Wong, G.K.L., Chem. Mater. 12 (2000) 22682274.Google Scholar
28 Sakohara, S., Ishida, M., and Anderson, M.A., J. Phys. Chem. B 102 (1998) 1016910175.Google Scholar
29 Tien, Z.R., Criscienti, L., Sporke, E., McKenzie, B., Cygan, R., Liu, J., Voigt, J., and Machesky, M.L., SAND Report submitted February 2005.Google Scholar
30 Vigil, G., Xu, Z., Steinberg, S., Israelachvili, J.. J. Colloid and Interface Sci. 165, (1994) 367385.Google Scholar
31 Mullin, J.W., Crystallization, 2nd Ed. Butterworth, London, 1972.Google Scholar
32 Wong, E.M., Bonevich, J.E., and Searson, P.C., J. Phys. Chem. B 102 (1998) 77707775.Google Scholar
33 Tokumoto, M.S., Briois, V., Santilli, C.V. and Pulcinelli, S.H., J. Sol-Gel Tech. 26 (2003) 547551.Google Scholar