Published online by Cambridge University Press: 25 February 2011
We have measured the specific heat of κ-(BEDT-TTF)2Cu(NCS)2 from 4 to 14 K. The superconducting transition at 9.4 K is observed in zero applied magnetic field and in a field of 0.3 T. Both the magnitude of the change in Cp at Tc and the temperature dependence of Cp below Tc indicate a strong coupling superconductor. If the lattice specific heat is assumed to contain contributions due to the eighteen vibrational degrees of freedom, the phonon contribution to the specific heat in our temperature range can be represented by a Debye integral expression with a Debye temperature of 95 K. A model of collective modes suggesting the origin of the eighteen degrees of freedom is presented.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.