Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T06:44:22.073Z Has data issue: false hasContentIssue false

Specific Heat Measurements on κ-(Bedt-Ttf)2Cu(Ncs)2

Published online by Cambridge University Press:  25 February 2011

R. G. Goodrich
Affiliation:
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001
Jing-Chun Xu
Affiliation:
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001
Get access

Abstract

We have measured the specific heat of κ-(BEDT-TTF)2Cu(NCS)2 from 4 to 14 K. The superconducting transition at 9.4 K is observed in zero applied magnetic field and in a field of 0.3 T. Both the magnitude of the change in Cp at Tc and the temperature dependence of Cp below Tc indicate a strong coupling superconductor. If the lattice specific heat is assumed to contain contributions due to the eighteen vibrational degrees of freedom, the phonon contribution to the specific heat in our temperature range can be represented by a Debye integral expression with a Debye temperature of 95 K. A model of collective modes suggesting the origin of the eighteen degrees of freedom is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jerome, D., Mazaud, A, and Bechgaard, K., J. Physique Lett., 42, L95 (1980)Google Scholar
2. Parkin, S. S. P., Engler, E. M., Schumaker, R. R., Lagier, R., Lee, V.Y., Scott, J. C. and Greene, R. L., Phys. Rev. Lett., 50, 270 (1983)Google Scholar
3. Urayama, H., Yamochi, H., Saito, G., Nozawa, K., Sugano, T., Kinoshita, M., Sato, S., Oshima, K., Kawamoto, A., and Tanaka, J., J. Chem. Lett., 55 (1988)Google Scholar
4. Katsumoto, S., Kobayashi, S.-I., Urayama, H., Yamochi, Hideki, and Saito, G., J. Phys. Soc. Japan, 57, 3672 (1988)Google Scholar
5. Andraka, B., Kim, J. S., Stewart, G. R., Carlson, K. D., Wang, H.H., and Williams, J. M., Phys. Rev. B Rapid Communications, to be published.Google Scholar
6. Urayama, H., Yamochi, H., Saito, G., Nozawa, K., Sugano, T., Kinoshita, M., Sato, S., Oshima, K., Kawamoto, A., and Tanaka, J., Chem. Lett. 55, (1988)Google Scholar
7. Carlson, K. D., Geiser, U., Kini, A. M., Wang, H. H., Montgomery, L. K., Kwok, KW. K., Beno, M. A., Williams, J. M., Cariss, C. S., Crabtree, G. W., Whangbo, M.-H., and Evain, M., Inorg. Chem. 27, 967 (1988)Google Scholar
8. The authors are indebted to Margaret Blohm and Oliver LeBlanc for providing the sample.Google Scholar
9. Gartner, S., Gogu, E., Heinen, I., Keller, H. J., Klutz, T., and Schweitzer, D., Solid State Commun. (1988)Google Scholar
10. Xu, Jing-chun and Goodrich, R. G., Rev. Sci. Inst., to be published.Google Scholar
11. Lord, R. C., Ahlberg, J. E. and Andrews, D. H., J. Chem. Phys. 5, 649 (1937)Google Scholar
12. Westrum, E. F. Jr, and McCullough, J. P., Thermodynamics of Crystals, p. 59 Google Scholar
13. Loram, J. W., J. Phys. CrSolid State Phys. 19, 6113 (1986)Google Scholar
14. Pesty, F., Garoche, P., and Moradpour, A., Mol. Cryst. Liq. Cryst., 119, 251 (1985)Google Scholar
15. Madison, M. R., Coleman, L. B., Kimball, J. C., and Williams, R. M., Phys. Rev. B, 25, 6146 (1982)CrossRefGoogle Scholar