No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Transition metal nitride-based, wear-resistant hard coatings on cutting tools and other substrates often lack distinct colorations allowing product differentiation and self-lubricating properties. In the present work, the possibility of achieving these objectives for sputtered coatings based on the purple-red Al2Au phase within the Al-Au system was investigated. Coatings were characterized with respect to morphology, chemical and phase composition, hardness, optical, oxidation and tribological properties. Al2Au-containing coatings were deposited with dense, fine-grained structures yielding a hardness of 4 GPa and pink coloration. The coatings were stable up to about 850°C, where the onset of oxidation occurs. Low friction coefficients against alumina were achieved between 500 and 700°C. The concept of applying Al2Au-containing coatings as a colored self-lubricating layer on top of a hard coated cemented carbide tool warrants further investigations.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.