Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T19:45:40.024Z Has data issue: false hasContentIssue false

Stability, Electronic Properties, and Structural Isomerism in Small Copper Clusters

Published online by Cambridge University Press:  14 December 2012

Juan M. Montejano-Carrizales
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí San Luis Potosí, 78140 S.L.P., MEXICO
Faustino Aguilera-Granja
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí San Luis Potosí, 78140 S.L.P., MEXICO
Ricardo A. Guirado-López
Affiliation:
Instituto de Física, Universidad Autónoma de San Luis Potosí San Luis Potosí, 78140 S.L.P., MEXICO
Get access

Abstract

We present extensive pseudopotential density functional theory calculations dedicated to analyze the stability, electronic properties, and structural isomerism in Cu6 clusters. We consider structures of different symmetries and charge states. Our total energy calculations reveal a strong competition between two- and three-dimensional atomic arrays, the later being mostly energetically preferred for the anionic structures. The bond lengths and electronic spectra strongly depend on the local atomic environment, a result that is expected to strongly influence the catalytic activity of our clusters. Using the nudged elastic band method we analyze the interconversion processes between different Cu6 isomers. Complex atomic relaxations are obtained when we study the transition between different cluster structures; however relatively small energy barriers of approximately 0.3 eV accompany the atomic displacements. Interestingly, we obtain that by considering positively charged Cu6+ systems we reduce further the energy barriers opposing the interconversion process. The previous results could imply that, under a range of experimental conditions, it should be possible to observe different Cu6cluster structures in varying proportions.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baishya, K., Idrobo, J. C., Öğüt, S., Yang, M., Jackson, K. A., and Jellinek, J., Phys. Rev. B 83, 245402 (2011).CrossRefGoogle Scholar
Guzman-Ramirez, G., Aguilera-Granja, F., and Robles, J., Eur. Phys. Jour. D 57, 49 (2010).CrossRefGoogle Scholar
Ford, M. S., Anderson, M. L., Barrow, M. P., Woodruff, D. P., Drewello, T., Derrick, P. .J., and Mackenzie, S. R., Phys. Chem. Chem. Phys. 7, 2005, 975 (2005).CrossRefGoogle Scholar
Starace, A. K., Neal, C. M., Cao, B., Jarrold, M. F., Aguado, A., and López, J. M., J. Chem. Phys. 131, 044307 (2009).CrossRefGoogle Scholar
Henkelman, G., Uberuaga, B. P., and Jonsson, H., J. Chem. Phys. 113, 9901 (2000).CrossRefGoogle Scholar
Baroni, S., Dal Corso, A., de Gironcoli, S., Giannozzi, P., Cavazzoni, C., Ballabio, G., Scandolo, S., Chiarotti, G., Focher, P., Pasquarello, A., Laasonen, K., Trave, A., Car, R., Marzani, N., and Kokalj, A., http://www.pwscf.org/.Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar