Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T12:37:14.044Z Has data issue: false hasContentIssue false

Stability in OTFT Gas Sensors

Published online by Cambridge University Press:  01 February 2011

Josephine B. Lee
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley 144 MB Cory Hall, Berkeley, CA 94720
Martin Heeney
Affiliation:
Merck Chemicals Ltd. NB-C, UK, Chilworth Science Park, University Parkway, Chilworth, Southampton, Hants, S016 7QD, UK
Steve Tierney
Affiliation:
Merck Chemicals Ltd. NB-C, UK, Chilworth Science Park, University Parkway, Chilworth, Southampton, Hants, S016 7QD, UK
Iain McCulloch
Affiliation:
Merck Chemicals Ltd. NB-C, UK, Chilworth Science Park, University Parkway, Chilworth, Southampton, Hants, S016 7QD, UK
Amanda Murphy
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
Jinsong Liu
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
Jean M.J. Fréchet
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720
Vivek Subramanian
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley 144 MB Cory Hall, Berkeley, CA 94720
Get access

Abstract

Organic thin film transistor (OTFT) gas sensors fabricated with an array of different active materials are monitored for shifts in performance characteristics during continuous operation over many days in both inert and ambient environments. We analyze the different patterns of degradation behavior observed in different materials and discuss approaches to decoupling a device's sensor response from its stress response.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gomes, H. L., Stallinga, P., Dinelli, F., Murgia, M., Biscarini, F., Leeuw, D.M. de, Muco, T., Geurts, J., Molenkamp, L.W., and Wagner, V., Appl. Phys. Lett. 84, 3184 (2004).Google Scholar
[2] Torres, I., Taylor, D.M., and Itoh, E., Appl. Phys. Lett. 85, 314 (2004).Google Scholar
[3] Salleo, A. and Street, R.A., J. Appl. Phys. 94, 471 (2003).Google Scholar
[4] Matters, M., Leeuw, D.M. de, Herwig, P.T., and Brown, A.R., Synth. Met. 102, 998 (1999)Google Scholar
[5] Street, R. A., Salleo, A., and Chabinyc, M. L., Phys. Rev. B 68, 085316 (2003).Google Scholar
[6] Salleo, A. and Street, R.A., Phys. Rev. B 70, 235324 (2004).Google Scholar
[7] Rep, D.B.A., Morpurgo, A.F., Sloof, W.G.,and Klapwijk, T.M., J. Appl. Phys 93, 2082 (2003).Google Scholar
[8] Meijer, E.J., Detcheverry, C., Baesjou, P.J., Veenendaal, E. van, Leew, D.M. de, and Klapwijk, T.M., J. Appl. Phys 93, 4831 (2003)Google Scholar
[9] Hoshino, S., Yoshida, M., Uemura, S., Kodzasa, T., Takada, N., Kamata, T., and Yase, K., J. Appl. Phys 95, 5088 (2004).Google Scholar
[10] Zhu, Z.T., Mason, J.T., Dieckmann, R., and Malliaras, G. G., Appl. Phys. Lett. 81, 4643 (2003).Google Scholar
[11] Murphy, A. R., Liu, J., Luscombe, C., Kavulak, D., Fréchet, J.M.J, Kline, J. R., McGehee, D. M., Chem. Mater. 2005, submitted.Google Scholar
[12] Meijer, E.J., Detcheverry, C., Baesjou, P.J., Veenendaal, E. van, and Leeuw, D.M. de, J. Appl. Phys., 93, 4831 (2003).Google Scholar
[13] Wehrspohn, R. B., Deane, S. C., French, I. D., Gale, I., Hewett, J., Powell, M. J., and Robertson, J., J. Appl. Phys. 87, 144 (2000)Google Scholar
[14] Zilker, S.J., Detcheverry, C., Cantatore, E., and Leew, DM de, Appl. Phys. Lett. 79, 1124 (2001).Google Scholar