Published online by Cambridge University Press: 15 February 2011
The following study is a portion of a comprehensive research program that is examining the stability of a variety of nuclear waste forms. In addition to the bulk waste forms, important individual radiophases are being studied to obtain a more complete understanding of the behavior of the components of complex multiphase radwaste systems. The stability of the strontium radiophase in supercalcine and an iodine-radiophase will be discussed.
The strontium radiophase in this study was Sr-powellite and the iodine radiophase was I-sodalite. Each radiophase was incorporated into bulk compositionally adjusted portland and aluminate cements. Two processing variables were studied: curing at 60°C and warm pressing at 150°C and 345 MPa.
Sr-powellite in portland cement leaches incongruently; a combination of dissolution and diffusion-controlled exchange of Ca for Sr is demonstrated. In the warm-pressed aluminate cement these reactions are masked by reactions with the curing cement. I-sodalite leaching data indicate dissolution, dominant at long times, combined with diffusion, dominant at short times.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.