Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T11:06:33.459Z Has data issue: false hasContentIssue false

Strain dependence and magnetic anisotropy in chromium dioxide thin films

Published online by Cambridge University Press:  17 March 2011

L. Spinu
Affiliation:
Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, U.S.A
H. Srikanth
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620, U.S.A
X. W. Li
Affiliation:
Physics Department, Brown University, Providence, Rhode Island 02912
A. Gupta
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598
Gang Xiao
Affiliation:
Physics Department, Brown University, Providence, Rhode Island 02912
Get access

Abstract

Field-dependent transverse susceptibility measurements based on a novel tunnel-diode oscillator (TDO) method were used to probe the magnetic anisotropy and switching in epitaxially grown CrO2 films on TiO2 substrates. The static field was applied in three different orientations (0°, 45° and 90° ) with respect to the magnetic easy axis. Singular peaks in the transverse susceptibility were observed that are associated with the anisotropy and switching fields in CrO2. Theoretical calculations based on a coherent rotation model display remarkable agreement with the experimental data. A new peak emerges at low temperatures and is identified to be a consequence of temperature-dependent magnetoelastic contributions resulting from the in-plane tensile strain in the films due to varying coefficients of thermal expansion in the film and the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kämper, K. P., Schmidt, W., Güntherodt, G., Gambino, R. J., and Ruf, R., Phys. Rev. Lett. 59, 2788 (1987).Google Scholar
2. Coey, J. M. D., Berkowitz, A. E., Balcells, Ll., and Putris, F. F, Phys. Rev. Lett. 80, 3815 (1998).Google Scholar
3. Li, X. W., Gupta, A., and Xiao, Gang, Appl. Phys. Lett 75, 713 (1999).Google Scholar
4. Li, X.W., Gupta, A., McGuire, T. T., Duncombe, P. R., and Gang Xiao, J. Appl. Phys. 85, 5585 (1999).Google Scholar
5. Rabe, M., Dreßen, J., Dahmen, D., Pommer, J., Stahl, H., Rüdiger, U., Güntherodt, G., Senz, S., and Hesse, D., J. Magn. Magn. Mater. 211, 314 (2000).Google Scholar
6. Srikanth, H., Wiggins, J., and Rees, H., Rev. Sci. Instrum, 70, 3097 (1999).Google Scholar
7. Spinu, L., Srikanth, H., Carpenter, E. E., and O'Connor, C. J., J. Appl. Phys. 87, 5490 (2000).Google Scholar
8. Spinu, L., Srikanth, H., Wiemann, J. A., Li, S., Tang, J., and O'Connor, C. J., IEEE Trans. Mag, 36, 3032 (2000).Google Scholar
9. , Aharoni, Frei, E. H., Shtrikman, S., and Treves, D., Bull. Res. Counc. of Israel, 6A, 215 (1957).Google Scholar
10. Stoner, E. C., and Wolfarth, E. P., Phil. Trans. Roy. Soc. London A240, 599 (1948).Google Scholar
11. Rodbell, D. S., Magnetocrystalline, J. Phys. Soc. Jpn, 21, 1224 (1966).Google Scholar
12. Spinu, L., Srikanth, H., Gupta, A., Li, X. W., and Xiao, Gang, Phys. Rev. B 62, 8931 (2000).Google Scholar